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Abstract—We consider an adaptive controller for a single-mode object and study the possibility
of using it for a multi-mode object. We propose an enhanced adaptive control algorithm for a
multi-mode object. We study the influence of the quantization effect in DA and AD converters
on the results of adaptive control. We study the influence of test signal amplitudes on identi-
fication results and show the findings of experimental studies for an adaptive controller with
improved algorithms.
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1. INTRODUCTION

There are several research directions in the field of adaptive control theory where external
disturbance is an unknown bounded function.

One of such directions is related to the notion of a reference model. Characteristic results of
this direction can be found, for instance, in [1, 2]. The fundamental idea of this direction is easy
to understand on the example of [1], where the authors solve an LQ-optimization problem for an
object with unknown coefficients. Solving this problem with Riccati equations, they substitute
quasiestimates constructed with the gradient method as true object coefficients. Such quasiesti-
mates may significantly differ from true values under the influence of external disturbances. In [3],
other possibilities this approach provides are discussed, possibilities that do not use quasiestimates.

One characteristic feature of the method of recurrent objective inequalities [4, 5] is the formu-
lation of an adaptive control objective as admissible residues for the deviations of the established
object output under the influence of arbitrary bounded disturbances. In [6, 7], solution of the
l1-optimization problem is generalized to the case of unknown object coefficients. In these works,
the authors use a variation of the gradient method in such a way that the resulting quasiesti-
mates for object coefficients ensure minimal deviation of the system output. However, numerical
implementation for this method becomes more complicated.

Therefore, a number of works have been devoted to a more narrow class of external disturbances.
For instance, in [8] the external disturbance is assumed to be a piecewise constant function with a
given frequency range, while estimates of object coefficients can be found with a test signal and an
adaptive observer.

In frequency adaptive control [9], the control objective is a given accuracy in object output, and
the external disturbance can be an arbitrary bounded function. The method of finite–frequency
identification [10] employs a test signal in the form of a finite sum of harmonics. Implementation of
this approach began with the controller FAC-1 [11] and has undergone a number of modifications
over the last two decades, including algorithms for tuning the amplitudes, frequencies, and duration
of adaptation.

This work is organized as follows. In Section 2, we give the problem setting. Section 3 contains
an exposition of known results for the problem’s solution in the single-mode case and a description
of the testbed. In Section 4, we describe the direct reconstruction method and propose a technique
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for suppressing noises caused by level quantization in the digital-analog (DA) and analog-digital
(AD) converters together with a way to design an implementable controller with this property.
In Section 5 we present numerical studies of the proposed controller that take into account the
presence of a DA or AD converter in the system. In Section 6, we discuss the results of seminatural
experimental studies. Appendices contain derivations of main expressions and the proof of the
statement.

2. PROBLEM SETTING

Consider an object given by a difference equation

y(k) + d
[m]
1 y(k − 1) + . . . + d

[m]
n−1y(k − n+ 1) + d[m]

n y(k − n)

= k
[m]
1 u(k − 1) + . . .+ k

[m]
n−1u(k − n+ 1) + k[m]

n u(k − n) + f(k), (2.1)

k = 0, 1, 2, . . . , m = 1, 2, . . . ,

where y(k) is the object output measured at time moment t = kh (h is the discretization interval
of this object); u(k), the control; f(k), unmeasured external disturbance which is an unknown
bounded function (|f(k)| � f∗, where f∗ is a given number); m, index of the object operation

mode; n, a known number. Object coefficients d
[m]
j and k

[m]
j are unknown numbers that change at

time moments t
[m]
cm and are constant on time intervals

[
t
[m]
cm , t

[m+1]
cm

)
, m = 1, 2, 3, . . . , t

[1]
cm = 0. Time

moments t
[m]
cm , m = 2, 3, 4, . . . are known or can be found in the adaptation process. The object is

asymptotically stable on each of the operation modes m.

The control comes from a controller:

u(k) + g
[m]
1 u(k − 1) + . . .+ g

[m]
ψ−1u(k − ψ + 1) + g

[m]
ψ u(k − ψ)

= r
[m]
0 yv(k − ψ + n− 1) + r

[m]
1 yv(k − ψ + n− 2) + . . .+ r

[m]
n−1yv(k − ψ), m = 1, 2, 3, . . . , (2.2)

where yv(k)�y(k)−v(k), v(k) is the identifying signal, r[m]=[r
[m]
0 , . . . ,r

[m]
n−1], g

[m] = [g
[m]
1 , . . . , g

[m]
ψ ]

are controller coefficients, ψ � n − 1 is a given number. Coefficients r[m], g[m] are found by the

time moment t
[m]
cm + Δt

[m]
adapt, where t

[m]
cm is the moment when the mth operational mode begins

at the object, Δt
[m]
adapt is the duration of adaptation on mode m. In the first mode (for m = 1),

object parameters are unknown, and as the control signal we give a test signal u(k) = v(k). On

subsequent modes on time intervals
[
t
[m]
cm , t

[m]
cm +Δt

[m]
adap

)
controller (2.2) operates with coefficients

r[m−1], g[m−1].

Transition function of the controller (2.2) has the following form:

wcnt(q) =
r
[m]
0 qψ−n+1 + r

[m]
1 qψ−n+2 + . . .+ r

[m]
n−1q

ψ

1 + g
[m]
1 q + . . .+ g

[m]
ψ qψ

, (2.3)

where the shift operator q is defined as qix(k) � x(k − i).

The problem is to find, for every m = 1, 2, 3, . . . , the controller coefficients r[m], g[m] such that
controller (2.2) meets the following conditions on accuracy:

|y(k)| � y�, k > k
[m]
� , (2.4)

where y� is a given number, k
[m]
� is such that the time moment t� = k

[m]
� h lies inside the time

interval t
[m]
cm < t < t

[m+1]
cm , m = 1, 2, 3, . . . . We make the following assumptions:
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(a) there exists a number k
[m]
� satisfying (2.4);

(b) there exists a controller (2.2) that ensures that objective (2.4) is achieved for known object
coefficients (2.1);

(c) the object coefficients change slowly from mode to mode, in such a way that the object in
the mth mode with a controller constructed for the object in mode (m− 1) is still stable (the
adjacent stability condition). However, if we do not change controller coefficients the system will
lose stability in passing to some subsequent mode;

(d) the time interval until an object operation mode change exceeds the time interval needed
for adaptation:

t[m+1]
cm > t[m]

cm +Δt
[m]
adap, m = 1, 2, 3, . . . ,

where Δt
[m]
adapt is the time needed for adaptation.

Experimental studies with a frequency adaptive controller whose results are shown in Sections 5
and 6 show a high level of noise in the control signal caused by level quantization in DA and AD
converters, which leads to increased identification time and increased error in object parameter
identification for the closed system. The purpose of this work is to further develop existing adap-
tive control algorithms to the case of a multimode object, update the algorithms with respect to
the presence of DA and AD converters in the control system, and conduct experiments with the
enhanced controller.

3. PRELIMINARIES

Let us begin by stating some results on solving the problem in the single-mode case [12] (m = 1)
and refining the problem by accounting for characteristic features caused by multiple modes in the
object.

The structural scheme of an adaptive controller is shown on Fig. 1.

The test signal generator emits a test signal v(k) that consists of n harmonics:

v(k) =
n∑
i=1

ρi sin(ωikh), 0 < ωi <
π

h
,

where ρi is the amplitude of the ith harmonic and ωi is its frequency.
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Fig. 1. Structural scheme of an adaptive controller.
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The Fourier filter computes estimates α̂i, β̂i for frequency parameters [10] of the object:

α̂yi = αyi(N) =
2

ρiNτ

k0+Nτ∑
k=k0+1

y(k) sin(ωikh), β̂yi = βyi(N) =
2

ρiNτ

k0+Nτ∑
k=k0+1

y(k) cos(ωikh),

α̂ui = αui(N) =
2

ρiNτ

k0+Nτ∑
k=k0+1

u(k) sin(ωikh), β̂ui = βui(N) =
2

ρiNτ

k0+Nτ∑
k=k0+1

u(k) cos(ωikh),

N = 1, 2, 3, . . . , τ =
2π

min(ωi)h
.

Frequency parameters computer finds frequency parameters of the object:

α̂i =
α̂yi α̂ui + β̂yi β̂ui

α̂2
ui + β̂2ui

, β̂i =
−α̂yi β̂ui + β̂yi α̂ui

α̂2
ui + β̂2ui

, i = 1, n.

Identifier solves frequency equations [10]:

k̂(e−jωih)− (α̂i + jβ̂i)d̂(e
−jωih) = 0, i = 1, n,

k̂(q) = k̂1q+ . . .+ k̂n−1q
n−1+ k̂nq

n, d̂(q) = 1+ d̂1q+ . . .+ d̂n−1q
n−1+ d̂nq

n are estimates of object
polynomials k(q) = k1q + . . .+ kn−1q

n−1 + knq
n, d(q) = 1 + d1q + . . .+ dn−1q

n−1 + dnq
n.

The transition function of the object found in identification can be described as

w(q) =
k̂(q)

d̂(q)
. (3.1)

Object (3.1) represented in the state space has the following form:

{
x(k) = Ax(k − 1) + bu(k − 1)
y(k) = cx(k),

(3.2)

where x(k) is the n-dimensional vector of the object state; A, a matrix of size n × n; b, an
n-dimensional vector of numbers; c, a row of numbers.

The synthesizer solves the LQ-optimization problem with functional

J =
∞∑
k=0

{
xT (k)Qx(k) + x2n+1(k)

+ ε21 [xn+2(k)]
2 + ε22 [xn+3(k)]

2 + . . .+ ε2ψ−1 [xn+ψ(k)]
2 + ε2ψ [μ(k)]2

}
, (3.3)

where

Q = cT q̃2c, q̃ =
f∗

y∗
,

xn+1(k) � u(k), xn+2(k) �
xn+1(k + 1)− xn+1(k)

h
,

xn+3(k) �
xn+2(k + 1)− xn+2(k)

h
, . . . , xn+ψ(k) �

xn+ψ−1(k + 1)− xn+ψ−1(k)

h
,

μ(k) �
xn+ψ(k + 1)− xn+ψ(k)

h
,
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ε2i =
Ciψ

52iω2i
cp

(i = 1, ψ) are sufficiently small coefficients [13] that depend on the frequency of system

slice ωcp; here C
i
ψ is the binomial coefficient from ψ by i, and the number ψ � n− 1 is found from

the implementability condition of the controller’s transition function. Note that for h→ 0 it holds
that xn+2 → u̇, xn+3 → ü, . . . .

The synthesizer finds controller coefficients in such a way that it satisfies conditions on control
accuracy (2.4). It uses the estimates of object coefficients k̂j and d̂j , j = 1, n, found through the
experiments.

For an experimental study of FAC-25, a special testbed FM-2 has been developed [14]. The FM-2
testbed consists of an industrial controller WinCon W-8341 [15] that contains 14-bit DA and AD
converters and an IBM-compatible single-board industrial computer Athena [16] with embedded
12-bit DA and 16-bit AD converters. FAC-25 operates on the industrial controller WinCon while
the object is imitated by the industrial computer Athena.

4. SUPPRESSION OF NOISE (DISTURBANCES) CAUSED
BY THE PRESENCE OF DA AND AD CONVERTERS

4.1. Basic Idea of Our Approach

To reduce the noises in the control signal we use the following approach. The essence of our
idea is to increase the order of the denominator for the controller’s transition function (2.3), i.e.,
it is a kind of filter for such disturbances (noises). We implement it as follows: in the quality
functional (3.3) the order of controller’s denominator is defined by the parameter ψ = n − 1. We
add to this value the number γ that leads to an increase in the order of controller’s denominator:
ψ = n− 1+ γ. We study how the controller’s transition function depends on the number γ. To do
so, we consider the primary stages of controller design.

4.2. Direct Method for Reconstructing the Phase Vector

Controller design is based on solving an LQ-optimization problem and constructing an observer
with the direct reconstruction method [13].

The controller design algorithm is based on the optimal controller with respect to state in the
sense of the following functional:

J =
∞∑
k=0

{
xT (k)Qx(k) +Ru2(k)

}
, (4.1)

where Q ∈ R
n×n, R = 1 (for ψ = 0 functional (3.3) coincides with (4.1)).

Functional (4.1) is minimized on the motions of object (3.2) with state controller

u(k) = Kx (k), (4.2)

where the n-dimensional row vector K is found via the solution of the Riccati equation.

Proposition. We propose to perform controller design with state controller (4.2) and ob-
server (4.3):

qψx(k) = l(q)u(k) + λ(q)y(k), (4.3)

which implies that

[qψ −Kl(q)]u(k) = Kλ(q)y(k). (4.4)
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Observer (4.3) results from the direct reconstruction method [13], and its derivation is given in
Appendix A. In expression (4.3),

l(q) = −(L0)−1[l1 l2 . . . ln−1]φ(q), (4.5)

λ(q) = (L0)−1ψ(q), (4.6)

where

L0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

c
cA
cA2

...
cAn−1

⎤
⎥⎥⎥⎥⎥⎥⎦
, l1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
cb
cAb
...

cAn−2b

⎤
⎥⎥⎥⎥⎥⎥⎦
, l2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
cb
...

cAn−3b

⎤
⎥⎥⎥⎥⎥⎥⎦
, . . . , ln−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
cb

⎤
⎥⎥⎥⎥⎥⎥⎦
, (4.7)

φ(q) =

⎡
⎢⎢⎢⎢⎢⎢⎣

qψ

qψ−1

qψ−2

...
qψ−n+2

⎤
⎥⎥⎥⎥⎥⎥⎦
, ψ(q) =

⎡
⎢⎢⎢⎢⎢⎢⎣

qψ

qψ−1

qψ−2

...
qψ−n+1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (4.8)

where L0 is an n× n matrix, l1, . . . , ln−1 are n-dimensional vectors.

In [13], an observer similar to (4.3) has been constructed with the use of “past” values of the
signal y(k), u(k), i.e., values that are preserved in the memory of the implemented controller’s
computer. This approach has the following disadvantage: in constructing the observer we use the
inverse matrix A−1 which may not exist if there is an integrator (a zero eigenvalue in the matrix A)
in the object. The proposed approach has no such disadvantage.

The transition function of the controller (4.4) can be written as

wcnt(q) =
Kλ(q)

(qψ −Kl(q))
. (4.9)

Note that in expression (4.9) polynomials (Kλ(q)) and (qψ − Kl(q)) have their largest degree
equal to ψ; the least degree in the numerator (qψ −Kl(q)) equals ψ − n + 1, in the denominator,
(Kλ(q)) – ψ − n + 2. This implies that transition function (4.9), generally speaking, cannot be
implemented. In order to implement a controller we will consider the functional (3.3).

4.3. A Method for Amplifying the Controller’s Filtering Properties.
Designing an Implementable Controller

As we have already noted, experimental studies with a frequency adaptive controller have shown
a high level of noises in the control signal caused by level quantization in DA and AD converters
which has led to increased duration and errors in the object’s identification. The basic idea for
suppressing such noises (disturbances) is to increase the order in the denominator of the controller’s
transition function. This can be done as follows.

The controller in question is designed with the functional (3.3) with parameter ψ = n − 1
[13]. In order to amplify filtering properties, the controller’s parameter ψ can be increased by γ:
ψ = n − 1 + γ. Solving the problem defined in Section 4.2 with functional (3.3) leads to a state
controller that has the following form:

μ(k) = Kx(k); (4.10)
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its derivation is given in Appendix B. Expression (4.10) can be rewritten as

d̃(q)u(k) = K [1]qψx(k), (4.11)

where d̃(q) = qψ det(Iq−1−Ã)−1

hψ
is a polynomial of degree ψ, matrix Ã ∈ R

ψ×ψ has the following
structure:

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 h 0 0 . . . 0
0 1 h 0 . . . 0
0 0 1 h . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . h

hK [2](1) hK [2](2) hK [2](3) hK [2](4) . . . hK [2](ψ) + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.12)

K [1] ∈ R
1×n, K [2] ∈ R

1×ψ are rows of numbers that result from optimizing functional (3.3) with
an extended state vector.

Substituting (4.3) into (4.11), we get an implementable controller in the following form:

(
d̃(q)−K [1]l(q)

)
u(k) = K [1]λ(q)y(k). (4.13)

Derivations of expressions (4.11), (4.13) are given in Appendix B.

Let us study the stability of system (3.2), (4.13). To do so, we compare characteristic polynomials
of systems (3.2), (4.11) and (3.2), (4.13). Consider the characteristic polynomial of system (3.2),
(4.11), which is asymptotically stable by construction. Using the formula for the determinant of a
2× 2 block matrix, we get

D(q) =

∣∣∣∣∣
I −Aq −bq
−qψK [1] d̃(q)

∣∣∣∣∣ = |I −Aq|
(
d̃(q)− qψ+1K [1](I −Aq)−1b

)
, (4.14)

where I is the unit matrix of the corresponding dimension.

Similarly, we write the characteristic polynomial of the closed system (3.2), (4.13):

D(1)(q) =

∣∣∣∣∣
I −Aq −bq

−K [1]λ(q)c d̃(q)−K [1]l(q)

∣∣∣∣∣
= |I −Aq|

(
d̃(q)−K [1]l(q)−K [1]λ(q)c(I −Aq)−1bq

)
. (4.15)

Statement. Characteristic polynomials of systems without observer D(q) and with observer
D(1)(q) coincide: D(1)(q) = D(q). Since D(q) is stable by construction (since the controller results
from optimizing a quadratic functional (3.3)), this means that D(1)(q) is also stable.

The proof of statement for the case n = 3 is given in Appendix C.

In controller (4.13), the largest degree in the left- and right-hand sides equals deg(d̃(q)) = ψ. The
smallest degree in the left-hand side (denominator of the controller’s transition function) is zero,
and the smallest degree of the right-hand side (numerator of the controller’s transition function)
equals ψ − (n − 1) = γ. This implies that the value of parameter γ may increase the order in
the controller’s transition function denominator. As we will see below, increasing the order of the
controller’s denominator by γ lets us efficiently suppress undesirable noises (disturbances) in the
control signal caused by level quantization in DA and AD converters.
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5. MODELING A SYSTEM WITH DA AND AD CONVERTERS

5.1. Quantization Model for DA, AD

It is known [17] that level quantization in DA and AD converters means that the signal has a
finite number of possible states with respect to the level; the number of states is defined by the
capacity of a DA or AD converter. The number of these states is given by M = 2p, where p is the
capacity and M is the number of possible values. The quantization step δ is given by δ = 2V/2p,
where V determines the limit value of a quantizer; e.g., for the FM-2 testbed V = 10V. A perfect
quantizer characteristic has the form shown on Fig. 2.

Following [17], we write this characteristic, taking into account its asymmetry due to the odd
number of “steps,” as

g1 =

⎧
⎪⎨
⎪⎩

V − δ for g > V − δ
g for −V � g � V − δ

−V for g < −V ;
(5.1)

g̃ =
2V

2p

⌊
(g1 + δ/2)

2p

2V

⌋
, (5.2)

where g is a signal continuous with respect to the level, g1 is the signal g after the saturation of
quantizer characteristic, brackets �. . .� denote rounding down, and the expression (5.2) itself defines
level quantization with respect to the signal g1.

In modeling an object identification process in a closed system, we need to take into account
the level of quantization for DA and AD converters on each of the discrete time ticks.

We write controller (2.2) as equations in the state space
{
xc(k) = Acxc(k − 1) + bcyv(k − 1)
u(k) = ccxc(k) + dcyv(k − 1).

For the modeling we have constructed the following algorithm. For every time moment k, signals
of object output y(k) and control u(k) that have passed through DA and AD converter quantizers
are given by expression

ỹ(k) = fDA(y(k)), ˜̃y(k) = fAD(ỹ(k)),

ũ(k) = fDA(u(k)), ˜̃u(k) = fAD(ũ(k)).

Here fAD and fDA denote the functions of AD- and DA-transformation according to algorithm (5.1)
and (5.2) that assign a value g̃ to a continuous signal g.
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Fig. 2. Static characteristic of the quantizer.
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Fig. 3. The testbed structure with DA and AD converters.

Each of the signals y(k), u(k) is quantized with the capacity of DA and AD converters according
to Fig. 3. The experimental testbed FM-2 has p1 = 16, p2 = 12, p3 = 14, p4 = 14 bit.

After DA and AD converter quantizers, the object and controller will be given by

{
x(k) = Ax (k − 1) + b˜̃u(k − 1)
y(k) = cx (k),

{
xc(k) = Acxc(k − 1) + bc(v(k − 1)− ˜̃y(k − 1))

u(k) = ccxc(k) + dc(v(k − 1)− ˜̃y(k − 1)).

5.1.1. Numerical experiment 1. A continuous counterpart of the object model has the following
form:

wo(s) =
0.4s + 1

0.2s3 + 1.24s2 + 5.24s + 1
.

The controller is given by transition function

wr(q) =
−80.37 + 154.4q − 74.24q2

1− 1.655q + 0.6741q2
.

Controller design is done with the following values of parameters: γ = 0, q̃ = 10, ε1 = 9.35×10−6,
ε2 = 0.006.

Test signal:

v(t) = 0.05 sin(0.2t), (5.3)

external disturbance f(t) = 0.

Figures 4 and 5 show the influence of level quantization on the operation of a closed system.
Figures 4a and 4b show respectively the object output and control signal without taking level
quantization into account. Figures 5a and 5b show respectively the object output and control
signal with level quantization in DA and AD converters.

The figures indicate that due to level quantization in a closed system the control signal is under
a lot of noise, which leads to imprecise object identification in the closed system.

5.1.2. Numerical experiment 2. Let us see what happens as we increase the order of the con-
troller’s denominator for γ = 2. The controller with an extended denominator is defined by the
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Fig. 4. Signals y, u without level quantization.

Fig. 5. Signals y, u with level quantization.

Fig. 6. Signals y, u with controller (5.4).

transition function

wcnt(q) =
−2.532q2 + 4.882q3 − 2.357q4

1− 3.318q + 4.132q2 − 2.288q3 + 0.4752q4
. (5.4)

Controller design has been done for the following values of parameters: q̃ = 10, ε1 = 0.012, ε2 =
5.61 × 10−5, ε3 = 1.14 × 10−7, ε4 = 8.75× 10−11.

As the test signal we used function (5.3), f(t) = 0.
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Figures 6a and 6b show respectively the object output y(t) and control signal u(t) with the effect
of level quantization as a result of modeling with the controller (5.4).

The figures indicate that by increasing the order of the controller’s transition function denomi-
nator we can effectively reduce the noises cause by quantization in DA and AD converters.

5.2. The Influence of Test Signal Amplitude on Identification Result in a Closed System

The presence of level quantization in a control system imposes constraints on test signal ampli-
tudes. Obviously, a small test signal amplitude, less than one step of quantization, will not have
any influence on the system’s output, so it will be impossible to identify the object. The question
arises: for what values of test signal amplitudes will the identification result not be significantly
influenced by level quantization?

To answer this question, we have studied the influence of test signal amplitudes on identification
results. By the identification result we mean that the coefficients of the original and identified

Fig. 7. Dependence of relative error in the coefficients of the identified object on the test signal amplitudes.

Fig. 8. Dependence of relative error in the coefficients of the identified object on the test signal amplitudes
(enlarged).
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objects are close in the following sense:

εident = max
i

(
k̂i − ki
ki

,
d̂i − di
di

)
, i = 0, n, (5.5)

where ki, di are coefficients in the continuous counterpart of object (2.1); k̂i, d̂i, estimates of
coefficients ki, di found in identification.

Figures 7 and 8 show numerical modeling results for the identification process. The horizontal
axis shows test signal amplitudes ρi (identical for all harmonics); the vertical axis, identification
error (5.5).

For small test signal amplitudes, quantization does have a significant effect on identification
results. In general, this dependence has an exponential form: as test signal amplitudes increase
the identification error decreases. As test signal amplitudes grow, the relative identification error
stabilizes on the level of 1–3%.

6. EXPERIMENTAL STUDIES

The FM-2 testbed described in Section 3 has been used for experimental studies of a FAC-25
controller for a multi-mode object.

To test an adaptive controller in a closed system, we have generated 16 modes with the corre-
sponding object coefficients at random. We assume that the object is given by

y(s) =
Kobj(T1s+ 1)

(T2s+ 1)(T 2
3 s

2 + 2T3ξ + 1)
u(s) +

1

(T2s+ 1)(T 2
3 s

2 + 2T3ξ + 1)
f(s),

T1 = 0.4, ξ = 0.6.

Object parameters for the 16 modes are given in Tables 1 and 2.

As an external disturbance acting on the object we have chosen the function f(t)=sgn(sin(1.3t)).

Note that the system with the first controller without adaptation loses stability in mode 16 when
the object changes its operation modes.

Experimental results are shown in Tables 3 and 4 and on Figs. 9 and 10. Tables 3 and 4 show
maximal deviations of the object output after the adaptation process is over in each mode (stage 3
on Figs. 9 and 10). In the experiments, the control objective (2.4) was specified as the number
y� = 0.1. The tables indicate that for all modes the control objective (2.4) is satisfied. Experiments
were conducted as follows. Before adaptation, the object was working in modem, and the controller
was taken from the object working in mode m − 1. The adaptation process is turned on by an
operator’s demand. After the adaptation process is over, in a certain time the object changes

Table 1. Object modes 1–8

Mode
number

Kobj T2 T3

1 1 5 0.2
2 1.32 6.99 0.15
3 0.93 10 0.19
4 1.32 13.91 0.26
5 0.92 19.86 0.19
6 1.22 13.47 0.14
7 1.75 9.44 0.19
8 2.47 12.52 0.28

Table 2. Object modes 9–16

Mode
number

Kobj T2 T3

9 1.68 8.4 0.21
10 1.24 5.93 0.16
11 1.65 7.89 0.2
12 1.24 5.39 0.14
13 1.36 4.47 0.48
14 1.45 3.5 0.65
15 2.6 3.12 1.2
16 4.25 4.73 1.14
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Fig. 9. Object output y(k) in mode 1.

Fig. 10. Object output y(k) in mode 10.

its operational mode, also by request of an operator. The adaptation process includes object
identification and controller synthesis according to the algorithm described in Sections 3 and 4.

Figures 9 and 10 show experimental results corresponding to object modes 1 and 10. The
numbers on these figures denote the following stages: 1, object output before adaptation; 2, the
adaptation stage and computing a new controller; 3, system operation after adaptation with the
new controller.

Table 3. Experimental results on an FM-2 testbed in modes 1–8

Index 1 2 3 4 5 6 7 8

max |y(k)| 0.08 0.06 0.05 0.05 0.03 0.04 0.05 0.04

Table 4. Experimental results on an FM-2 testbed in modes 9–16

Index 9 10 11 12 13 14 15 16

max |y(k)| 0.05 0.07 0.05 0.06 0.08 0.05 0.05 0.04
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7. CONCLUSION

Our main results are the following:

• we have developed a frequency adaptive controller for a multi-mode object;
• we have proposed a method for constructing a controller with observer that uses “future” values
y(k), u(k) and shifts by ψ ticks back, since the method for observer construction described
in [13] uses an inverse object matrix that may not exist;

• we have studied the effect of level quantization in DA and AD converters on identification
results and adaptive controls;

• we have proposed a way to amplify the controller’s filtering properties that decreases the
influence of noises caused by DA and AD converters quantization.

The proposed algorithms have been proven efficient with experimental studies on a multi-mode
object.
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APPENDIX A

Direct observer construction. Using object Eqs. (3.2), we write n equations of the form

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y(k − ψ) = cx (k − ψ)
y(k − ψ + 1) = cx(k − ψ + 1) = c(Ax(k − ψ) + bu(k − ψ))
y(k − ψ + 2) = cx(k − ψ + 2) = c(A2x(k − ψ) +Abu(k − ψ) + bu(k − ψ + 1))
...
y(k − ψ + (n− 1)) = c(An−1x(k − ψ) +An−2bu(k − ψ) + . . . + bu(k − ψ + (n − 2)))

or in matrix form:

y = L0x(k − ψ) + l1u(k − ψ) + l2u(k − ψ + 1) + . . .+ ln−1u(k − ψ + (n− 2)), (A.1)

where L0, l1, . . . , ln−1 have been defined in (4.7), y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y(k − ψ)
y(k − ψ + 1)
y(k − ψ + 2)

...
y(k − ψ + (n− 1))

⎤
⎥⎥⎥⎥⎥⎥⎦
, L0 ∈ R

n×n,

l1, . . . , ln−1 are n-dimensional vectors.

Equation (A.1) can be rewritten as

ψ(q)y(k) = qψL0x(k) + [l1 l2 . . . ln−1]φ(q)u(k),

where ψ(q), φ(q) have been defined in (4.8).

This implies that

qψx(k) = l(q)u(k) + λ(q)y(k),

where l(q) = −(L0)−1[l1 l2 . . . ln−1]φ(q), λ(q) = (L0)−1ψ(q).

APPENDIX B
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Controller’s synthesis stages. On the first stage, we synthesize a state controller (4.2) for ob-
ject (3.2). After that, the resulting controller is subject to the direct reconstruction method (Sec-
tion 4.2), thus obtaining an output controller

[qψ −Kl(q)]u(k) = Kλ(q)y(k),

in which polynomials (Kλ(q)) and (qψ − Kl(q)) have largest degree ψ, the least degree in the
numerator (qψ − Kl(q)) equals ψ − n + 1, in the denominator (Kλ(q)), ψ − n + 2, i.e., such a
controller cannot be physically implemented.

On the second stage we find the slice frequency [13] for system ωcp.

On the third stage we compose an extended system. To achieve physical implementability and
amplify the controller’s filtering properties, we introduce additional terms in the functional (3.3):
xn+1 . . . xn+ψ with coefficients εi (i = 1, ψ, ψ = n− 1 + γ).

Let us further consider the newly introduced functional terms xn+1 . . . xn+ψ as additional ele-
ments of the state vector x for some extended system

x(k) = Φx(k − 1) + pμ(k − 1), (B.1)

where

x(k) =
[
x(k) x̃(k)

]T
, x̃(k) =

[
xn+1(k) xn+2(k) . . . xn+ψ(k)

]T
,

Φ ∈ R
(n+ψ)×(n+ψ), p ∈ R

n+ψ,

and the term μ(k) is a control signal in this extended system:

μ(k) �
xn+ψ(k + 1)− xn+ψ(k)

h
.

Thus, we pose the optimal control problem for system (B.1) in the sense of the following func-
tional:

J =
∞∑
k=0

{
xT (k)Qx(k) +Rμ2(k)

}
, (B.2)

which coincides (up to notation) with functional (4.1).

Using the notation from (3.3), we write expression

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn+1(k + 1)
.
= hxn+2(k) + xn+1(k)

xn+2(k + 1)
.
= hxn+3(k) + xn+2(k)
. . .

xn+ψ−1(k + 1)
.
= hxn+ψ(k) + xn+ψ−1(k)

xn+ψ(k + 1)
.
= xn+ψ(k) + hμ(k).

(B.3)

Taking into account object Eq. (3.2) and expressions (B.3), the extended control system (B.1)
can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x(k) = Ax (k − 1) + bxn+1(k − 1)
xn+1(k) = hxn+2(k − 1) + xn+1(k − 1)
xn+2(k) = hxn+3(k − 1) + xn+2(k − 1)

. . .
xn+ψ−1(k) = hxn+ψ(k − 1) + xn+ψ−1(k − 1)
xn+ψ(k) = xn+ψ(k − 1) + hμ(k − 1).

(B.4)
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Taking into account (B.4), matrices of system (B.1) in block form look like

Φ =

[
A B
0ψn G

]
, p =

[
0n+ψ−1
1

h

]
,

where Φ ∈ R
(n+ψ)×(n+ψ), p ∈ R

(n+ψ)×1, 0ψn denotes the zero matrix of size ψ× n, B =
[
b 0nψ−1

]
∈

R
n×ψ, G =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 h 0 . . . 0 0
0 1 h . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 h
0 0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ R

ψ×ψ, and matrices Q,R of the functional (B.2) look like

Q =

[
Q 0nψ
0ψn F

]
, R = ε2ψ, (B.5)

where Q ∈ R
n×n, F = diag(1, ε21, . . . , ε

2
ψ−1).

On the fourth stage we look for optimal control for system (B.1) in the sense (B.2)

μ(k) = Kx(k), (B.6)

with a procedure described in Section 4.2 but using matrices (B.5) instead of matrices Q, R of the
functional (4.1).

On the fifth stage, we compose the controller equation. To do so, we rewrite Eq. (B.6) as

μ(k) = ũ(k) +K [2]x̃(k), ũ(k) � K [1]x(k). (B.7)

Then K will be written as [K [1]K [2]]
.
= K, where K [1] is a string of length n, and K [2] is a string

of length ψ.

Note that it holds that

u(k) = c̃x̃(k), (B.8)

where c̃ =
[
1 0 0 0 . . . 0

]
∈ R

ψ.

Taking into account (B.7), we can write (B.3) as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn+1(k + 1) = hxn+2(k) + xn+1(k)
xn+2(k + 1) = hxn+3(k) + xn+2(k)

. . .
xn+ψ−1(k + 1) = hxn+ψ(k) + xn+ψ−1(k)

xn+ψ(k + 1) = xn+ψ(k) + hK [2]x̃(k) + hũ(k),

or even in a more compact form due to (B.8):
{
x̃(k + 1) = Ãx̃(k) + b̃ũ(k)
u(k) = c̃x̃(k),

(B.9)

where matrix Ã has been defined in (4.12), b̃ =
[
0 0 0 . . . 0 h

]T ∈ R
ψ.

To get controller equation, we write an expression that relates ũ(k) and u(k) in system (B.9):

u(k) = c̃(Iz − Ã)−1b̃ũ(k), (B.10)

where z is the shift operator: zix(k) � x(k + i).
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We denote

d̃(z) � det(Iz − Ã), (B.11)

ξ(z) � det(Iz − Ã)c̃(Iz − Ã)−1b̃. (B.12)

Let us show that ξ(z) = hψ. We denote

H̃ = Iz − Ã. (B.13)

Matrix H̃ ∈ R
ψ×ψ has the structure

H̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z − 1 −h 0 0 . . . 0
0 z − 1 −h 0 . . . 0
0 0 z − 1 −h . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . −h

−hK [2](1) −hK [2](2) −hK [2](3) −hK [2](4) . . . z − hK [2](ψ) − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Transforming (B.12), with (B.13) we get that

ξ(z)
.
= det H̃ × c̃H̃−1b̃ = c̃

⎡
⎢⎢⎣

H̃1,1 . . . −11+ψH̃1,ψ
...

. . .
...

−1ψ+1H̃ψ,1 . . . H̃ψ,ψ

⎤
⎥⎥⎦

T

b̃

=
[
H̃1,1 . . . −1ψ+1H̃ψ,1

] [
0 0 0 . . . 0 h

]T
= −1ψ+1H̃ψ,1h,

where −1i+jH̃i,j is the algebraic complement for an element of matrix H̃ at the intersection of row i
and column j. Therefore,

ξ(z) = −1ψ+1H̃ψ,1h = −1ψ+1h

∣∣∣∣∣∣∣∣∣∣∣∣

−h 0 0 . . . 0
z − 1 −h 0 . . . 0
0 z − 1 −h . . . 0
...

...
...

. . .
...

0 0 . . . z − 1 −h

∣∣∣∣∣∣∣∣∣∣∣∣

. (B.14)

Expanding the determinant in (B.14) ψ − 1 times by the first rows, we get

ξ(z) = −1ψ+1H̃ψ,1h = −11+ψh(−1ψ−1)hψ−1 = (−1)2ψhψ = hψ. (B.15)

By construction, the order deg(d̃(z)) = dim(Ã) = ψ.

Taking into account (B.11), (B.12), and (B.15), we can rewrite (B.10) as

d̃(z)u(k) = hψK [1]x(k). (B.16)

Denoting ď(z) � d̃(z)
hψ

and multiplying both parts of (B.16) by z−ψ, we get (4.11):

d̃(q)u(k) = K [1]qψx(k), (B.17)

where d̃(q) � z−ψď(z).
Adding to (B.17) the observer Eq. (4.3) qψx(k) = l(q)u(k) + λ(q)y(k), we get (4.13):

(
d̃(q)−K [1]l(q)

)
u(k) = K [1]λ(q)y(k).
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APPENDIX C

Proof of Statement. For brevity we show the proof for n = 3. Consider the following expression:

qψ+1(I −Aq)−1b = qψ+1(I −Aq)−1b− l(q) + l(q) (C.1)

= l(q) + (L0)−1L0
(
qψ+1(I −Aq)−1b− l(q)

)
.

We transform the expression L0
(
qψ+1(I −Aq)−1b− l(q)

)
. Consider expressions (4.5) and (4.8)

that for n = 3 are written as ψ(q) =

⎡
⎢⎣
qψ

qψ−1

qψ−2

⎤
⎥⎦ , l(q) = −(L0)−1(l1q

ψ + l2q
ψ−1). Using (4.7) we get

that

L0
(
qψ+1(I −Aq)−1b− l(q)

)
= L0qψ+1(I −Aq)−1b+ l1q

ψ + l2q
ψ−1

=

⎡
⎢⎣
c
cA
cA2

⎤
⎥⎦ qψ+1(I −Aq)−1b+

⎡
⎢⎣

0
cb
cAb

⎤
⎥⎦ qψ +

⎡
⎢⎣
0
0
cb

⎤
⎥⎦ qψ−1

=

⎡
⎢⎣
qψ+1c(I −Aq)−1b
qψ+1cA(I −Aq)−1b
qψ+1cA2(I −Aq)−1b

⎤
⎥⎦+

⎡
⎢⎣

0
cbqψ

cAbqψ + cbqψ−1

⎤
⎥⎦

=

⎡
⎢⎣

cqψ+1(I −Aq)−1b
c(qψ+1A(I −Aq)−1 + Iqψ)b

c(qψ+1A2(I −Aq)−1 +Aqψ + Iqψ−1)b

⎤
⎥⎦ .

(C.2)

We check the following expression:

qψ+1A(I −Aq)−1 + qψI = qψ(I −Aq)−1. (C.3)

Multiplying by (I−Aq) on the right, it is easy to see that it holds. Multiplying both parts of (C.3)
by q−1, we get with (C.3) that

qψ+1A2(I −Aq)−1 +Aqψ + Iqψ−1 = qψ−1(I −Aq)−1. (C.4)

Taking into account (4.8) and (C.3), (C.4), expression (C.2) becomes

⎡
⎢⎣

cqψ+1(I −Aq)−1b
c(qψ+1A(I −Aq)−1 + Iqψ)b

c(qψ+1A2(I −Aq)−1 +Aqψ + Iqψ−1)b

⎤
⎥⎦ =

⎡
⎢⎣
qψc(I −Aq)−1bq
qψ−1c(I −Aq)−1bq
qψ−2c(I −Aq)−1bq

⎤
⎥⎦ = ψ(q)c(I −Aq)−1bq. (C.5)

Due to (C.5), (C.2), (4.6), expression (C.1) transforms into the following:

qψ+1(I −Aq)−1b = l(q) + (L0)−1L0
(
qψ+1(I −Aq)−1b− l(q)

)

= l(q) + (L0)−1ψ(q)c(I −Aq)−1bq = l(q) + λ(q)c(I −Aq)−1bq,

so

qψ+1(I −Aq)−1b = l(q) + λ(q)c(I −Aq)−1bq. (C.6)
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Finally, with (C.6) we can rewrite (4.15) as

D(1)(q) = |I −Aq|
(
d̃(q)−K [1]l(q)−K [1]λ(q)c(I −Aq)−1bq

)

= |I −Aq|
(
d̃(q)−K [1]

(
l(q) + λ(q)c(I −Aq)−1bq

))

= |I −Aq|
(
d̃(q)−K [1]qψ+1(I −Aq)−1b

)
. (C.7)

It is easy to see that (C.7) coincides with (4.14), i.e., D(1)(q) = D(q). This completes the proof
for the case n = 3.
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