АДАПЛАБ-ДИРЕКТИВА: ТОЧНОЕ АДАПТИВНОЕ УПРАВЛЕНИЕ В СИСТЕМАХ С ЭТАЛОННОЙ МОДЕЛЬЮ

А.Г. Александров

Институт проблем управления им. В.А. Трапезникова РАН Россия, 117997, Москва, Профсоюзная, 65 E-mail: alex7@ipu.rssi.ru

Ю.Ф. Орлов

Московский государственный университет им. М. В. Ломоносова Россия, 119992, Москва, Ленинские горы

Ключевые слова: программное обеспечение, системы с эталонной моделью, идентификация, адаптивное управление, частотный подход.

Key words: software, systems with reference model, identification, adaptive control, frequency domain approach.

В работе описывается директива 512.1 «Адаптивное управление в системах с эталонной моделью при внешних возмущениях». Реализована она в пакете программ АДАПЛАБ. Приведен пример работы с пакетом.

ADAPLAB-DIRECTIVE: ACCURACY CONTROL IN SYSTEMS WITH REFERENCE MODEL / A.G. Alexandrov (Institute of Control Sciences, 65, Profsoyuznaya, Moscow, 117997, Russia, E-mail: alex7@ipu.rssi.ru), Yu.F. Orlov (Moscow State University, Leninskiye gory, Moscow, 119992, Russia). In the paper new directive 512.1 "Adaptive control in systems with reference model excited by external disturbance" is described. This is a package ADAPLAB realization. An example of the package application is given.

1. Введение

АДАПЛАБ – это пакет прикладных программ для персональных ЭВМ типа IВМ РС (и совместимых с ней), предназначенный для моделирования процессов идентификации и адаптивного управления, а также определения настраиваемых параметров алгоритмов идентификации и адаптации по результатам моделирования.

Он предназначен для инженеров – разработчиков систем управления. Такой инженер (пользователь) указывает номер директивы (решающей его задачу), вводит по запросу ЭВМ необходимые данные и анализирует результаты.

Главное отличие АДАПЛАБ от аналогичных пакетов [1-3] состоит в учете неизвестных ограниченных внешних возмущений, действующих на объект управления.

Одним из основных подходов к идентификации и адаптивному управлению непрерывными объектами при ограниченных возмущениях является частотный подход [4]. Частотные алгоритмы доминируют в пакете.

Пакет программно реализован в виде директив, включающих в себя, в частности:

- > Частотную идентификацию
- > Идентификацию на основе метода наименьших квадратов
- У Частотное адаптивное (модальное и точное) управление
- > Адаптивное управление на основе метода наименьших квадратов
- > Адаптивное управление с эталонной моделью

За время, прошедшее с предыдущей публикации [5], в пакете появилась новая директива 512.1 «Адаптивное управление в системах с эталонной моделью при внешних возмущениях». Реализована она на основе конечночастотной идентификации, с использованием процедур [6], описанных в настоящей работе.

2. Класс решаемых директивой задач

Рассматривается полностью управляемый минимально-фазовый объект, описываемый дифференциальным уравнением

(1)
$$y^{(n)} + d_{n-1}y^{(n-1)} + \dots + d_1\dot{y} + d_0y = k_pu^{(p)} + \dots + k_1\dot{u} + k_0u + f, \quad p < n, \quad t \ge t_0,$$

где y(t), u(t) и f(t) — измеряемый выход объекта, управление и внешнее возмущение соответственно, $y^{(i)}$ и $u^{(j)}$ $\left(i=\overline{1,n},\,j=\overline{1,p}\right)$ — производные выхода и управления, d_i и k_j $\left(i=\overline{0,n-1},\,j=\overline{1,p}\right)$ — неизвестные числа, n и p — известны, возмущение f(t) — ограниченная, неизмеряемая, полигармоническая функция

(2)
$$f(t) = \sum_{i=1}^{\infty} f_i \sin(\omega_i^f t + \phi_i^f),$$

в которой ω_i^f и ϕ_i^f $\left(i=\overline{1,\infty}\right)$ — неизвестные частоты и фазы, а амплитуды f_i $\left(i=\overline{1,\infty}\right)$ — неизвестные числа, удовлетворяющие неравенству

$$(3) \qquad \sum_{i=1}^{\infty} \left| f_i \right| \le f^* \,,$$

где f^* – известное число.

Желаемый выход объекта – это измеряемый выход $y_m(t)$ эталонной модели, описываемой дифференциальным уравнением

$$(4)\ y_m^{(n_m)} + d_{m,n_{m}-1} y_m^{(n_m-1)} + \dots + d_{m,1} \dot{y}_m + d_{m,0} y_m = k_{m,p_m} r^{(p_m)} + \dots + k_{m,1} \dot{r} + k_{m,0} r, \quad p_m < n_m,$$
 где $d_{m,i}$ и $k_{m,j}$ $\left(i = \overline{0,n_m-1},\ j = \overline{0,p_m} \right)$ — известные числа, $r(t)$ — измеряемое задающее воздействие, которое также является ограниченной полигармонической функцией

(5)
$$r(t) = \sum_{i=1}^{\infty} r_i \sin(\omega_i^r t + \phi_i^r),$$

в которой ω_i^r и ϕ_i^r $(i=\overline{1,\infty})$ — неизвестные частоты и фазы, а амплитуды r_i $(i=\overline{1,\infty})$ — неизвестные числа, удовлетворяющие неравенству

$$(6) \qquad \sum_{i=1}^{\infty} \left| r_i \right| \leq r^* \,,$$

где r^* – известное число.

Цель управления u(t) состоит в том, чтобы разность $e(t) = y(t) - y_m(t)$ выходов объекта (1) и эталонной модели (4) удовлетворяла, начиная с некоторого момента времени $t^* > t_0$, требованию

(7)
$$|e(t)| \le e^* + \varepsilon(t^*), \quad t \ge t^*,$$

где e^* — заданное число, $\mathcal{E}(t^*)$ — зависящее от t^* число, модуль которого меньше e^* .

Управление u(t) формируется регулятором, описываемым дифференциальным уравнением

(8)
$$d_{c,n_c} u^{(n_c)} + \dots + d_{c,1} \dot{u} + d_{c,0} u = k_{c,p_c} e^{(p_c)} + \dots + k_{c,1} \dot{e} + k_{c,0} e, \quad p_c \le n_c, \quad t \ge t^*.$$

Реализованное в директиве 512 адаптивное управление позволяет по заданной границе f^* внешнего возмущения и r^* задающего воздействия найти регулятор (8) такой, чтобы, начиная с некоторого момента времени t^* , разность e(t) выходов объекта и эталонной модели удовлетворяла требованию (7) к точности слежения.

3. Управление известным объектом

При известных коэффициентах d_i $\left(i=\overline{0,n-1}\right)$ и k_j $\left(j=\overline{0,p},p=n-1\right)$ объекта (1), коэффициенты $d_{c,i}$ $\left(i=\overline{0,n_c}\right)$ и $k_{c,j}$ $\left(j=\overline{0,p_c}\right)$ регулятора (8) определяются [6] по следующему алгоритму:

1. Проверяется условие

(9)
$$\min_{0 \le \omega < \infty} \frac{\left| d(j\omega) k_m(j\omega) \right|}{\left| d_m(j\omega) \right|} \ge \frac{f^*}{r^*},$$

где
$$d(s) = s^n + \sum_{i=0}^{n-1} d_i s^i$$
, $d_m(s) = s^{n_m} + \sum_{i=0}^{n_m-1} d_{m,i} s^i$ и $k_m(s) = \sum_{i=0}^{p_m} k_{m,i} s^i$.

2. При выполнении условия (9), коэффициенты регулятора (8) вычисляются (как коэффициенты следующих полиномов) из равенств

(10)
$$d_c(s) = k(s)d_m(s) \text{ if } k_c(s) = d(s)d_m(s) - \delta_1(s),$$

где
$$d_c(s) = \sum_{i=0}^{n_c} d_{c,i} s^i$$
 , $k_c(s) = \sum_{i=0}^{p_c} k_{c,i} s^i$, $k(s) = \sum_{i=0}^p k_i s^i$, a $\delta_1(s) = s^{n+n_m} + \sum_{i=0}^{n+n_m-1} \delta_{1,i} s^i$

- гурвицев полином, который находится из тождества

(11) $\delta_1(-s)\delta_1(s) = d(-s)d(s)\big[d_{\it m}(-s)d_{\it m}(s) + q_{11}k_{\it m}(-s)k_{\it m}(s)\big],$ в котором

$$(12) q_{11} \ge \frac{4r^{*2}}{e^{*2}}.$$

3. Если же условие (9) не выполняется, коэффициенты регулятора (8) вычисляются из равенств

(13)
$$d_c(s) = k(s) \text{ и } k_c(s) = d(s) - \delta_2(s),$$

где $\delta_2(s) = s^n + \sum_{i=0}^{n-1} \delta_{2,i} s^i$ – гурвицев полином, который находится из тождества

(14)
$$\delta_2(-s)\delta_2(s) = d(-s)d(s) + q_{22}$$
,

в котором

$$(15) q_{22} \ge \frac{4f^{*2}}{e^{*2}}.$$

Алгоритм синтеза регулятора (8) реализован в виде FORTRANподпрограммы

Reference Synthesis (d,k, dm,km, par, flag, dc,kc, delta) где d, k, dm, km, dc и kc — параметры полиномов d(s), k(s), $d_m(s)$, $k_m(s)$, $d_c(s)$ и $k_c(s)$ соответственно; par — параметры: par.f — f^* , par.r — r^* , par.e — e^* , par.qll — q_{11} , par.qll — q_{22} и par.omega — ω_0 алгоритма синтеза, где ω_0 — начальная частота поиска минимума при проверке условия (9); flag — логическая переменная, фиксирующая истинность либо ложность выполнения условия (9); delta — факторизованный полином [$\delta_1(s)$ либо $\delta_2(s)$] системы.

Подпрограмма Reference Synthesis использует подпрограммы Conjugate(x,y) — построения: $y(s^2) = x(-s)x(s)$, Factor(y,x) — факторизации (разложения): $x(-s)x(s) = y(s^2)$ самосопряженного полинома, а также ряд стандартных подпрограмм-операций над полиномами из библиотеки Ufort пакета АДАПЛАБ.

4. Первый интервал адаптации

При неизвестных коэффициентах d_i $\left(i=\overline{0,n-1}\right)$ и k_j $\left(j=\overline{0,p}\right)$ объекта (1), для построения регулятора (8) применяется адаптивное управление, которое описывается уравнениями с кусочно-постоянными коэффициентами

$$(16)d_{c,n_c}^{[\kappa]}u^{(n_c)} + \dots + d_{c,1}^{[\kappa]}\dot{u} + d_{c,0}^{[\kappa]}u = k_{c,p_c}^{[\kappa]}e^{(p_c)} + \dots + k_{c,1}^{[\kappa]}\dot{e} + k_{c,0}^{[\kappa]}e + v, t_{\kappa-1} \leq t < t_{\kappa}, \ \kappa = \overline{1,N}.$$
 В этих уравнениях κ — номер интервала адаптации $\kappa = \overline{1,N}$, $\kappa = \overline{1,N}$, $\kappa = \overline{1,N}$.

окончания κ -го интервала, значение t_{κ} также как число N и коэффициенты $d_{c,i}^{[\kappa]}$ $\left(i=\overline{0,n_c}\right)$ и $k_{c,j}^{[\kappa]}$ $\left(j=\overline{0,p_c}\right)$ находятся в процессе адаптации, v(t) – известный испытательный сигнал.

На первом интервале адаптации идентифицируется объект (1), по которому, затем, синтезируется регулятор (16) для второго интервала адаптации. Идентифицированный объект имеет вид

$$(17) \qquad y^{(n)} + d_{n-1}^{[1]} y^{(n-1)} + \dots + d_1^{[1]} \dot{y} + d_0^{[1]} y = k_p^{[1]} u^{(p)} + \dots + k_1^{[1]} \dot{u} + k_0^{[1]} u + f, \quad t \geq t_0,$$
 с ошибками идентификации: $d_i^{[1]} - d_i$ $\left(i = \overline{0, n-1}\right)$ и $k_j^{[1]} - k_j$ $\left(j = \overline{0, p}\right)$, а синтезированный регулятор, соответственно

$$(18) \qquad d_{c,n_c}^{[2]} u^{(n_c)} + \dots + d_{c,1}^{[2]} \dot{u} + d_{c,0}^{[2]} u = k_{c,p_c}^{[2]} e^{(p_c)} + \dots + k_{c,1}^{[2]} \dot{e} + k_{c,0}^{[2]} e + v, \quad t \ge t_1,$$
 с ошибками синтеза: $d_{c,i}^{[2]} - d_{c,i}$ $\left(\dot{i} = \overline{0,n_c} \right)$ и $k_{c,i}^{[2]} - k_{c,i}$ $\left(\dot{j} = \overline{0,p_c} \right)$. Здесь $t_1 = t_0 + \tau$.

Для определения оценок коэффициентов d_i $\left(i=\overline{0,n-1}\right)$ и k_j $\left(j=\overline{0,p}\right)$ объекта (1), ко входу последнего прикладывается испытательный сигнал

(19)
$$u(t) = \exp \lambda (t - t_0) \sum_{k=1}^{n} \rho_k \sin \omega_k (t - t_0),$$

где ρ_k и ω_k $\left(k=\overline{1,n}\right)$ – амплитуды и частоты испытательного воздействия а λ – коэффициент экспоненциального взвешивания — заданные числа, такие, что $\omega_k \neq 0$ $\left(k=\overline{1,n}\right)$, $\omega_i \neq \omega_j$ $\left(i \neq j\right)$, $\lambda = 0$ при устойчивом объекте либо $\lambda > C_0 \geq 0$ при неустойчивом, где $C_0 = \max\{\text{Re}[roots\,d(s)]\}$ — степень неустойчивости объекта (1).

Программно моделирование (решение дифференциального уравнения) в АДАПЛАБе осуществляется при помощи FORTRAN-программы

согласно выбранной в директиве схеме: glf3p34. Следующая за ней цифра 1 определяет форму описания объекта — непрерывная, «вход-выход». Сам объект d(s)y = k(s)u + m(s)f задан параметрами d, k и m полиномов d(s), k(s) и m(s). Далее перечисляются параметры gen1 — генератора испытательного сигнала (19), dist — функции f(t) внешнего возмущения, dif — дифференциального уравнения, init — начальных условий и result — результатов решения [столбцы значений t_i , $u(t_i)$ и $y(t_i)$].

Решение дифференциального уравнения по необходимости сопровождается построением графиков при помощи FORTRAN-подпрограммы Plot('Имя Маски') с единственным параметром — Именем Маски, определяющим атрибуты конкретного графика из соответствующей базы данных: Plot.cfg (программа построения графиков имеет удобный язык управления).

Выход y(t) объекта, после умножения на $\exp \lambda (t_0 - t)$ (экспоненциального взвешивания) подается ко входу фильтра Фурье [7], выходы которого дают оценки

(20)
$$\widehat{\alpha}_{k} = \alpha_{k}(\tau) = \frac{2}{\rho_{k}\tau} \int_{t_{F}}^{t_{F}+\tau} y(t) \exp \lambda(t_{0} - t) \sin \omega_{k}(t - t_{0}) dt \\ \widehat{\beta}_{k} = \beta_{k}(\tau) = \frac{2}{\rho_{k}\tau} \int_{t_{F}}^{t_{F}+\tau} y(t) \exp \lambda(t_{0} - t) \cos \omega_{k}(t - t_{0}) dt$$

частотных параметров $\alpha_k = \text{Re } w(s_k)$ и $\beta_k = \text{Im } w(s_k)$ $\left(k = \overline{1,n}\right)$ [8] объекта (1), где $w(s) = \frac{k(s)}{d(s)}$ его передаточная функция, $s_k = \lambda + j\omega_k \left(k = \overline{1,n}\right)$, t_F — момент начала и τ — время фильтрации — числа, принимающие значения: $\tau = qT_b$ $\left(q = 1, 2, \ldots\right)$, $t_F = \widetilde{q}T_b$, \widetilde{q} — заданное число, $T_b = \frac{2\pi}{\omega_b}$, $\omega_b = \min(\omega_1, \omega_2, \ldots, \omega_n)$.

Программно фильтр Фурье (20) реализован в виде FORTRAN-подпрограммы

Filter Fourier ('result', gen1, filt1, alpha beta) вычисление интеграла в которой заменено суммой (метод прямоугольников) определенной параметрами фильтрации filt1, а результат фильтрации возвращается в виде набора alpha beta комплексных значений $\widehat{w}(s_k) = \widehat{\alpha}_k + j\widehat{\beta}_k$ $\left(k = \overline{1,n}\right)$.

Примечание 1 Поскольку сигнал с объекта снимается (и обрабатывается подпрограммой Filter Fourier) в дискретные моменты времени, испытательный сигнал (19) подается на объект (1) также дискретно. ●

Оценки коэффициентов d_i $\left(i = \overline{0, n-1}\right)$ и k_j $\left(j = \overline{0, p}\right)$ объекта (1) определяются из решения системы частотных уравнений идентификации [9]

(21)
$$\sum_{i=0}^{p} \operatorname{Re} s_{k}^{i} \widehat{k}_{i} - \sum_{i=0}^{n-1} \left[\operatorname{Re} s_{k}^{i} \alpha_{k}(\tau) - \operatorname{Im} s_{k}^{i} \beta_{k}(\tau) \right] \widehat{d}_{i} = \operatorname{Re} s_{k}^{n} \alpha_{k}(\tau) - \operatorname{Im} s_{k}^{n} \beta_{k}(\tau)$$

$$\sum_{i=0}^{p} \operatorname{Im} s_{k}^{i} \widehat{k}_{i} - \sum_{i=0}^{n-1} \left[\operatorname{Im} s_{k}^{i} \alpha_{k}(\tau) + \operatorname{Re} s_{k}^{i} \beta_{k}(\tau) \right] \widehat{d}_{i} = \operatorname{Im} s_{k}^{n} \alpha_{k}(\tau) + \operatorname{Re} s_{k}^{n} \beta_{k}(\tau)$$

Реализована последняя в виде FORTRAN-подпрограммы

Frequency Identification

(alpha beta, s1, deg d, deg k, d ident, k ident)

где s1 — набор комплексных значений s_k $\left(k=\overline{1,n}\right)$, deg d и deg k — предполагаемые степени полиномов d(s) и k(s), a d ident и k ident — результат идентификации в виде полиномов $\hat{d}(s)$ и $\hat{k}(s)$.

Решая для каждого $\tau = qT_b \ (q=1,2,...)$ частотные уравнения (21), проверяем необходимые условия сходимости процесса идентификации

$$(22) \quad d_i(qT_b) \div d_i[(q-1)T_b] \le \varepsilon_d \quad i = \overline{0,n-1} \quad u \quad k_j(qT_b) \div k_j[(q-1)T_b] \le \varepsilon_k \quad j = \overline{0,p} \; ,$$
 где ε_d и ε_k — достаточно малые заданные числа, а «÷» — символ отношения: $a \div b = |a-b|/|b|$ если $b \ne 0$ либо $a \div b = |a|$ если $b = 0$. Пусть в момент времени

 $au^* = q^*T_b$ эти условия выполнились. Тогда $d_i^{[1]} = \hat{d}_i = d_i(au^*)$ $\left(i = \overline{0, n-1}\right)$ и $k_i^{[1]} = \hat{k}_i = k_i(au^*)$ $\left(j = \overline{0, p}\right)$.

Далее, по результатам идентификации определяются оценки: $d_{c,i}^{[2]} = \widehat{d}_{c,i}$ $\left(i = \overline{0,n_c}\right)$ и $k_{c,j}^{[2]} = \widehat{k}_{c,j}$ $\left(j = \overline{0,p_c}\right)$ коэффициентов регулятора (8). Для этой цели используется приведенный выше алгоритм, коэффициенты d_i $\left(i = \overline{0,n-1}\right)$ и k_j $\left(j = \overline{0,p}\right)$ которого заменяются их оценками: $d_i^{[1]}$ $\left(i = \overline{0,n-1}\right)$ и $k_j^{[1]}$ $\left(j = \overline{0,p}\right)$. Обращение к подпрограмме

Reference Synthesis (d ident, k ident, dm, km, par, flag, dc synt, kc synt, delta assumed)

помимо синтезированных полиномов dc synt, kc synt, регулятора (18), формирует предполагаемый факторизованный полином delta assumed [равный $\delta_1^{[1]}(s)$ либо $\delta_2^{[1]}(s)$] системы (4), (17), (18) вида

(23)
$$\widetilde{d}(s)e = \widetilde{k}(s)v + \widetilde{h}(s)r + \widetilde{m}(s)f$$
,

где $\widetilde{d}(s) = d_m(s) \Big[d^{[1]}(s) d_c^{[2]}(s) - k^{[1]}(s) k_c^{[2]}(s) \Big], \qquad \widetilde{k}(s) = k^{[1]}(s) d_m(s),$ $\widetilde{h}(s) = -d^{[1]}(s) k_m(s) d_c^{[2]}(s) \quad \text{и} \quad \widetilde{m}(s) = d_m(s) d_c^{[2]}(s). \quad \text{Объект здесь представлен}$ полиномами $d^{[1]}(s)$ и $k^{[1]}(s)$ а регулятор $-d_c^{[2]}(s)$ и $k_c^{[2]}(s)$ соответственно. Обратный от предполагаемого факторизованного полинома delta assumed определяет передаточную функцию замкнутой системы: $\widetilde{w}(s) = 1/\delta_1^{[1]}(s)$ либо $\widetilde{w}(s) = 1/\delta_2^{[1]}(s)$ соответственно [с учетом (10) либо (13): $\widetilde{d}(s) = \widetilde{k}(s)\delta_1^{[1]}(s)$ либо $\widetilde{d}(s) = \widetilde{k}(s)\delta_2^{[1]}(s)$].

5. Второй интервал адаптации

Система (1), (4), (18) возбуждается испытательным сигналом

(24)
$$v(t) = \sum_{k=1}^{\overline{n}} \overline{\rho}_k \sin \overline{\omega}_k (t - t_1),$$

где $\overline{\rho}_k$ и $\overline{\omega}_k$ $\left(k=\overline{1,\overline{n}}\right)$ — амплитуды и частоты испытательного воздействия замкнутой системы — заданные числа (параметры генератора gen2), такие, что $\overline{\omega}_k \neq 0$ $\left(k=\overline{1,\overline{n}}\right)$, $\overline{\omega}_i \neq \overline{\omega}_j$ $\left(i \neq j\right)$, $\overline{n}=1+\mathrm{int}\left(\frac{n+n_m}{2}\right)$, где int — функция обнуления дробной части аргумента.

Динамический процесс замкнутой системы моделируется в директиве FORTRAN-программой analys2 с регулятором (18) приведенным подпрограммой

IO con to Cauchy dis (dc synt, kc synt, one, discr, A, b1, b2, c, d1, d2) к дискретной форме Коши

(25)
$$x(k+1) = A_c^{[2]}x(k) + b_{1c}^{[2]}e(k) + b_{2c}^{[2]}v(k), \quad u(k) = (c_c^{[2]}, x(k)) + d_{1c}^{[2]}e(k) + d_{2c}^{[2]}v(k).$$

Испытательный сигнал (24) прикладывается ко входу регулятора (25) также дискретно. Шаг дискретности (входящий в параметры дискретизации discrувязан с тактом обработки сигнала подпрограммой фильтра Фурье

ко входу которого подается разность e(t) выходов объекта (1) и эталонной модели (4). Выходы фильтра дают оценки

(26)
$$\widehat{\nu}_{k} = \nu_{k}(\tau^{[2]}) = \frac{2}{\overline{\rho}_{k}} \tau^{[2]} \int_{t_{1}}^{t_{1}+\tau^{[2]}} e(t) \sin \overline{\omega}_{k}(t-t_{1}) dt \\ \widehat{\mu}_{k} = \mu_{k}(\tau^{[2]}) = \frac{2}{\overline{\rho}_{k}} \tau^{[2]} \int_{t_{1}}^{t_{1}+\tau^{[2]}} e(t) \cos \overline{\omega}_{k}(t-t_{1}) dt$$

частотных параметров $v_k = \operatorname{Re} \overline{w}(\overline{s}_k)$ и $\mu_k = \operatorname{Im} \overline{w}(\overline{s}_k) \left(k = \overline{1, \overline{n}} \right)$ [8] замкнутой системы

(27)
$$\overline{d}(s)e = \overline{k}(s)v + \overline{h}(s)r + \overline{m}(s)f$$
,

с передаточной функцией $\overline{w}(s) = \overline{k}(s)/\overline{d}(s)$, где $\overline{d}(s) = d_m(s) [d(s)d_c^{[2]}(s) - k(s)k_c^{[2]}(s)]$, $\overline{k}(s) = k(s)d_m(s)$, $\overline{h}(s) = -d(s)k_m(s)d_c^{[2]}(s)$ и $\overline{m}(s) = d_m(s)d_c^{[2]}(s)$, $\overline{s}_k = j\overline{\omega}_k \left(k = \overline{1,\overline{n}}\right)$, а $\tau^{[2]} = \tau + K$ — время фильтрации, где K — заданное положительное число (его также можно определить экспериментально из необходимых условий [5] сходимости процесса идентификации).

Используя подпрограмму

Frequency Identification(nu mu,s2,deg,0,delta ident,zero) где deg=deg d+dm.deg либо deg=deg d в зависимости от значения логической переменной flag, идентифицируем факторизованный полином delta ident системы (27) [равный $\hat{\delta}_{1}^{[1]}(s)$ либо $\hat{\delta}_{2}^{[1]}(s)$ соответственно].

Процесс адаптации считается завершенным, если выполняется условие близости предполагаемого и идентифицированного факторизованных полиномов системы

(28)
$$\delta_{1,i}^{[1]}(\tau^{[2]}) \div \delta_{1,i}^{[1]} \le \varepsilon_1 \quad i = \overline{0, n + n_m - 1} \quad \pi u \delta o \quad \delta_{2,j}^{[1]}(\tau^{[2]}) \div \delta_{2,j}^{[1]} \le \varepsilon_2 \quad j = \overline{0, n - 1},$$

где \mathcal{E}_1 и \mathcal{E}_2 — достаточно малые заданные числа. Искомые коэффициенты регулятора (8), в этом случае, имеют вид: $d_{c,i}=d_{c,i}^{[2]}$ $\left(i=\overline{0,n_c}\right)$ и $k_{c,j}=k_{c,j}^{[2]}$ $\left(j=\overline{0,p_c}\right)$.

В противном случае [при нарушении условия близости (28)] выполняем указанные в статье [5] рекомендации. В частности, если система (27) асимптотически устойчива, реализованным в подпрограмме Recalc Wy пересчетом [7] по значениям \hat{V}_k и $\hat{\mu}_k$ улучшаем оценки частотных параметров $\hat{\alpha}_k$ и $\hat{\beta}_k$ $\left(k=\overline{1,n}\right)$ объекта, полученные на первом интервале. Используя

последние, находим оценки: $d_i^{[2]} = \hat{d}_i$ $\left(i = \overline{0, n-1}\right)$ и $k_j^{[2]} = \hat{k}_j$ $\left(j = \overline{0, p}\right)$ коэффициентов объекта (1) из решения системы частотных уравнений идентификации (21) [подпрограмма Frequency Identification], затем оценки: $d_{c,i}^{[3]} = \hat{d}_{c,i}$ $\left(i = \overline{0, n_c}\right)$ и $k_{c,j}^{[3]} = \hat{k}_{c,j}$ $\left(j = \overline{0, p_c}\right)$ коэффициентов регулятора (8) по приведенному выше алгоритму [подпрограмма Reference Synthesis], и т.д..

По окончании процесса адаптации, в момент времени $t^* = t_N$, регулятор описывается уравнениями (8), в которых $d_{c,i} = d_{c,i}^{[N]}$ $\left(i = \overline{0,n_c}\right)$ и $k_{c,j} = k_{c,j}^{[N]}$ $\left(j = \overline{0,p_c}\right)$.

6. Пример

6.1. Исходные данные и цель задания

Минимально-фазовый объект описывается уравнением

(29)
$$\ddot{y} + d_1 \dot{y} + d_0 y = k_1 \dot{u} + k_0 u + f$$
,

в котором d_1 , d_0 , k_1 и k_0 — неизвестные числа, f(t) — полигармоническое возмущение вида (2), а сумма его амплитуд ограничена величиной $f^* = 5$.

Эталонная модель описывается уравнением

(30)
$$\ddot{y}_m + 5\dot{y}_m + 6y_m = \dot{r} + r$$
,

полигармонический сигнал вида (5) которой ограничен числом $r^* = 40$.

Требуется найти коэффициенты регулятора

(31)
$$d_{c3}\ddot{u} + d_{c3}\ddot{u} + d_{c1}\dot{u} + d_{c0}u = k_{c3}\ddot{e} + k_{c2}\ddot{e} + k_{c1}\dot{e} + k_{c0}e$$
,

обеспечивающего, начиная с некоторого момента времени $t_{\scriptscriptstyle N}$, выполнение требования

$$(32) |y(t) - y_m(t)| \le 1, t \ge t_N,$$

к разности выходов объекта (29) и эталонной модели (30).

Примечание 2 Численные эксперименты, реализующие процессы идентификации и адаптации, осуществлялись на ПЭВМ с помощью пакета АДАПЛАБ. Значения

$$d_1 = 0$$
, $d_0 = -1$ и $k_1 = 1$, $k_0 = 2$,

коэффициентов объекта в этих экспериментах, а также

$$f(t) = 5\cos 4.6t$$
 u $r(t) = 20(\sin 2.5t + \sin 5t)$,

были взяты из статьи [11].•

Заметим также, что из структур уравнений (29), (30) объекта и эталонной модели следует выполнение неравенства (9) и поэтому находим по формуле (12) $q_{11} \ge 6400$.

6.2. Первый интервал адаптации

На первом интервале адаптации к объекту (29) приложим испытательный сигнал

$$u(t) = 0.1 \exp 1.1t (\sin 2t + \sin 4t)$$

и в моменты времени $\tau = \sigma T$ ($\sigma = 1, 2, ...$), где $T = \frac{2\pi}{\omega_1} = 3.14$ с., измерим выходы

фильтра Фурье (20). При этом, для каждого значения σ решим частотные уравнения (21) и проверим необходимые условия сходимости процесса идентификации

(33)
$$d_i[(\sigma+1)T] \div d_i(\sigma T) \le \varepsilon_d = 1.2 \quad u \quad k_i[(\sigma+1)T] \div k_i(\sigma T) \le \varepsilon_k = 1.2 \quad i = \overline{0,1}.$$

Условия (33) выполнились при $\sigma = 2$, а соответствующие оценки коэффициентов объекта имели значения

(34)
$$d_1^{[1]} = 0.49$$
, $d_0^{[1]} = -5.98$; $k_1^{[1]} = 3.04$, $k_0^{[1]} = -1.80$.

По алгоритму, приведенному в разделе 3, синтезируем регулятор (31)

(35)
$$d_{c,3}^{[2]}\ddot{u} + d_{c,2}^{[2]}\ddot{u} + d_{c,1}^{[2]}\dot{u} + d_{c,0}^{[2]}u = k_{c,3}^{[2]}\ddot{e} + k_{c,2}^{[2]}\ddot{e} + k_{c,1}^{[2]}\dot{e} + k_{c,0}^{[2]}e,$$

с $q_{11} = 100$ для второго интервала адаптации. Его коэффициенты имели значения

$$d_{c,3}^{[2]} = 3.04$$
, $d_{c,2}^{[2]} = 13.4$, $d_{c,1}^{[2]} = 9.24$, $d_{c,0}^{[2]} = -10.8$; $k_{c,3}^{[2]} = -11.1$, $k_{c,2}^{[2]} = -72.5$, $k_{c,1}^{[2]} = -154.1$, $k_{c,0}^{[2]} = -105.6$.

Предполагаемый факторизованный полином системы (29, 34), (30), (35) имел вид:

(36)
$$\delta_1^{[1]}(s) = s^4 + 16.6s^3 + 75s^2 + 127s + 70$$
.

6.3. Второй интервал адаптации

На втором интервале адаптации к системе (29), (30), (35) приложим испытательный сигнал

(37)
$$v(t) = 10^3 (\sin 2t + \sin 4t + \sin 6t)$$

и в моменты времени $\tau = \sigma \widetilde{T}$ ($\delta = 1, 2, ...$), где $\widetilde{T} = \frac{2\pi}{\widetilde{\omega}_1} = 3.14$ с., измерим выходы

фильтра Фурье (26). При этом, для каждого значения σ решим частотные уравнения

$$\sum_{i=0}^{3} \left[\operatorname{Re} \, \overline{s}_{k}^{i} \nu_{k} \left(\sigma \widetilde{T} \right) - \operatorname{Im} \, \overline{s}_{k}^{i} \mu_{k} \left(\sigma \widetilde{T} \right) \right] \delta_{1,i}^{[1]} \left(\sigma \widetilde{T} \right) = -\operatorname{Re} \, \overline{s}_{k}^{4} \nu_{k} \left(\sigma \widetilde{T} \right) + \operatorname{Im} \, \overline{s}_{k}^{4} \mu_{k} \left(\sigma \widetilde{T} \right)$$

$$\sum_{i=0}^{3} \left[\operatorname{Im} \, \overline{s}_{k}^{i} \nu_{k} \left(\sigma \widetilde{T} \right) + \operatorname{Re} \, \overline{s}_{k}^{i} \mu_{k} \left(\sigma \widetilde{T} \right) \right] \delta_{1,i}^{[1]} \left(\sigma \widetilde{T} \right) = -\operatorname{Im} \, \overline{s}_{k}^{4} \nu_{k} \left(\sigma \widetilde{T} \right) - \operatorname{Re} \, \overline{s}_{k}^{4} \mu_{k} \left(\sigma \widetilde{T} \right)$$

$$k = \overline{1,2}.$$

и проверим целевые условия (28):

(38)
$$\delta_{1,i}^{[1]} \left(\sigma \widetilde{T} \right) \div \delta_{1,i}^{[1]} \le \varepsilon_1 = 1.5, \quad i = \overline{0,3}.$$

При $\sigma = 80$ идентифицированный факторизованный полином системы (29), (30), (35) имел вид

(39)
$$\hat{\delta}_{1}^{[1]}(s) = s^4 + 6.2s^3 + 20s^2 + 49s + 32$$
,

и стало очевидно, что целевые условия (38) не выполняются и поэтому процесс адаптации должен продолжаться.

При $\sigma = 80$ оценки коэффициентов идентифицированного объекта имели значения

(40)
$$d_1^{[2]} = 0.157$$
, $d_0^{[2]} = -1.23$; $k_1^{[2]} = 0.975$, $k_0^{[2]} = 2.18$.

а синтезированного для третьего интервала адаптации (с $q_{11} = 7000$) регулятора, соответственно

$$d_{c,3}^{[3]} = 0.975,$$
 $d_{c,2}^{[3]} = 7.06,$ $d_{c,1}^{[3]} = 16.8,$ $d_{c,0}^{[3]} = 13.1;$ $k_{c,3}^{[3]} = -81.9,$ $k_{c,2}^{[3]} = -268,$ $k_{c,1}^{[3]} = -296,$ $k_{c,0}^{[3]} = -110.$

Предполагаемый факторизованный полином системы (29,40), (30), (31, 41) имел вид:

(42)
$$\delta_1^{[2]}(s) = s^4 + 87.1s^3 + 274s^2 + 290s + 103$$
.

6.4. Третий интервал адаптации

На третьем интервале адаптации система (29), (30), (31, 41) возбуждалась испытательным сигналом (37) и при σ = 80 идентифицированный факторизованный полином системы имел вид

(43)
$$\hat{\delta}_1^{[2]}(s) = s^4 + 46.6s^3 + 146s^2 + 151s + 58$$
.

Сравнивая коэффициенты полиномов (43) и (42) нетрудно видеть, что условие (28) их близости выполняется. Моделирование системы (29), (30), (31, 41) показало, что требование (32) к точности слежения также выполняется и следовательно искомый регулятор имеет вид (31, 41), где $v^{[3]} = 0$.

7. Список литературы

- 1. Overschee P.Van, Moor B.De, Aling H., Kosut R., Boyd S. A Fully Interactive Identification Module for Xmath // 10-th IFAC Symposium on System Identification. Preprints, Copenhagen, 1994, Vol. 4, P. 1.
- 2. Kollar I., Pintelon R., Schoukens J. Frequency domain system identification toolbox for MATLAB: a complex application example // 10-th IFAC Symposium on System Identification. Preprints, Copenhagen, 1994, Vol. 4, P. 23-28.
- 3. Szafnicki K., Gentil S. Toward a Knowledge-Based Training Tool for Identification with Benchmark // 10-th IFAC Symposium on System Identification. Preprints, Copenhagen, 1994, Vol. 2, P. 447-452.

- 4. Alexandrov A.G. Finite-Frequency Method of Identification // 10-th IFAC Symposium on System Identification. Preprints, Copenhagen, 1994, Vol. 2, P. 523-527.
- 5. Александров А.Г., Орлов Ю.Ф. Пакет программ АДАПЛАБ: новые возможности для моделирования процессов адаптации // Идентификация систем и задачи управления. SICPRO'03, М.: Институт проблем управления РАН, 2003, CD-ROM № ISBN 5-201-14948-0.
- 6. Александров А.Г. Адаптивное управление с эталонной моделью при внешнем возмущении (рукопись статьи).
- 7. Эйкхофф П. Основы идентификации систем управления. М.: Мир, 1975. 688 с.
- 8. Александров А.Г. Метод частотных параметров // АиТ.1989. Т. 50. № 12. С. 3-15.
- 9. Орлов Ю.Ф. Способ конечно-частотной идентификации многомерного объекта // Идентификация систем и задачи управления. SICPRO'2000, М.: Институт проблем управления РАН, 2000, CD-ROM № ISBN 5-201-09605-0, С. 237-244.
- 10. Александров А.Г. Частотное адаптивное управление устойчивым объектом при неизвестном ограниченном возмущении // АиТ. 2000. Т. 61. № 4. С. 106-116.
- 11. Narendra K.C., Annaswamy F.M. Robust Adaptive Control in the Presence of Bounded Disturbance // IEEE Trans. Autom. Control. 1986. V. AC-31. No 4.