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Abstract: Proposed is a technique of adaptive control for a multivariable plant in the
presence of bounded polyharmonic disturbance with infinity number of harmonics and
with the unknown amplitudes and frequencies. The control objective is to provide
the prescribed tolerances on forced oscillation of the plant and controller outputs.
The adaptation process is based on the finite-frequency identification of the plant
and closed-loop system. Adaptation terminates when the coefficients of the identified
plant-controller system is close to those of the identified closed-loop system. Con-
vergence conditions of the adaptation procedure are derived. They can be tested

experimentally. Copyright (©)2002 IFAC
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1. INTRODUCTION

In adaptive control it may be extracted two direc-
tions that are differed by assumptions on external
disturbance.

In the framework of the first direction the exter-
nal disturbance is absent (Anderson et al., 1986)
or it is a “white-noise” (Iserman, 1981). The di-
rection has large history connected, in particular,
with the model reference adaptive systems and the
least squares techniques. The last survey of this
direction is given in (Landau, 1997).

Since early 80’s the second direction where distur-
bance is unknown-but-bounded time function is
being developed: method of the recurrent targeted
inequalities (Yakubovich, 1988), least squares
estimation algorithm with dead zone (Zhao
and Lozano, 1993), frequency adaptive control

(Alexandrov, 1998), and so on. The control aim
in these techniques of second direction is described
by a polynomial with prescribed poles placement.

For many practical cases the control aim is the
prescribed tolerances on the deviation of the plant
output from zero. Technique of controller design
for this case has been proposed in (Alexandrov
and Chestnov, 1997, 1998). In this case the plant
coefficients are known and the disturbance is a
bounded polyharmonic function with known num-
ber of harmonics of unknown amplitudes and fre-
quencies.

In the present paper this technique is being devel-
oped for a plant with unknown coefficients and the
disturbance with infinity number of harmonics.

Unlike the above mentioned papers of the second
direction, where single-input-single-output plant
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plant. Tt is well known (Guidorzi, 1975; Gauthier
and Landau, 1978) that identification problem of
multivariable plant has not unique solution. In the
paper (Orlov, 2000) a structure, for which finite-
frequency identification gives unique solution, has
been obtained and it is used below to design an
algorithm of adaptive control.

The paper is organized as follows. In section 2 a
problem of adaptive control design is formulated
and its solution for known coefficients of plant is
given in section 3. In sections 4 and 5 adapta-
tion algorithm, which is based on finite-frequency
identification of the plant and closed-loop system,
is derived. Conditions of adaptation convergence
is studied in section 6.

2. PROBLEM STATEMENT

Consider a linear time-invariant system described
by the following equations

*=Ar+B(utw),
3.36 =A.x.+ cha

y=z=Cwx, t>ty (1)
u=C.x,. (2)

where (1) € R" is the state vector of plant
(1), ®.(t) € R" is the state vector of controller
(2), u(t) € R™ 1is the input to be controlled,
y(t) € R" is the measurable output, z(¢) € R" is
the controlled output, w(t) € R™ is the external
unmeasurable disturbance, A, B, C, A., B.,
C. are unknown constant matrices. The pair
(A, B) is controllable and pair (A, C) is observ-
able. The disturbance components are bounded
polyharmonic functions

wj(t) = Z Wk sin(wkt + 1/{7’!@), j=1m, (3)
k=1

where the frequencies wj; and the phases ;1
(j =1,m, k=1, oo) are unknown numbers and
amplitudes w;; satisfy the conditions

(o]
Z %2 I
wjk S w] 3 J=1m, (4)
k=1
where w3 (_] = ,m) are given numbers.

As t — oo forced oscillations of outputs of plant
and controller are described by expressions

zi(t) =Y ai(we) sinfwgt +¢i(we)], i=T7, (5)

wi(t) =Y bj(wr) sinfwrt +0; (wi)], j=T,m. (6)

The matrices A, B and C of plant (1) have the
following property: there exist matrices A., B,
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of forced oscillations of the plant and controller
outputs satisfy the following conditions

k=1 k=1
where a7 and b} (z =1,r, j= ,m) are given
numbers

Since the matrices A, B and C are unknown,
adaptive control must be used. In this case, con-
troller (2) is described by the following equations
with piecewise-constant coefficients

where & (Kj =1, N) is the number of adaptation
interval, ., 1s the termination time of the r-th
interval; ¢, as well as the number N and the
matrices A B and ¢l are found dur-
ing the adaptation process; L 1s a given matrix;
olFl(t) € R™ is a test signal, whose components
are defined below.

The adaptation process is terminated (at moment
ty ) and the controller is described by the equa-
tions (2) where A, = AV B. = BV and
c.=c™.

Problem 1 Find an adaptation algorithm for the
coefficients of controller (8) such that the system
(1), (2) meet the requirements (7) for steady-state
amplitudes of forced oscillations.

3. CONTROL OF AMPLITUDES OF FORCED
OSCILLATIONS FOR KNOWN PLANT

If the matrices A, B and C of plant (1) are
known, the matrices of controller (2), which solves
problem 1 is found from the expressions

A.=A-B(R'—y72Q,)B'P-K ;C, Bc:Kf,(g)
C.=R'B'P, K;=E,—*YP)"'YC”,

where the square non-negative matrices P and
Y of size n xn are the solution of the Riccati
equations

ATPPA-PB(R™'+472Q,) BT P=C"QC (10)
AY+Y A™Y CT(E,—~2Q)CY=-BQ,B" (11)

where number ~ satisfies the condition
Anax(PY) < 72, (12)
and Amax (M) is the maximal eigenvalue of the

non-negative matrix M. For Q@ = E, and
R =Q, = E,, (E, is an identity matrix of
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cide with the equations of H., -suboptimal con-
trol (Doyle, et al. 1989) (under the condition that
B1:B2:B and 0120220)

Let @ =diag[qy, ...
and Q, = E,, .

;rm];

,qr], R=diag[ry, ...

Assertion 1 If the elements of diagonal matrices
Q and R satisfy the inequalities

*QZw i=l,r, r;> b*2zwk’ J=1,m,(13)

Zkl J k=1

the steady-state amplitudes of forced oscillations
of system (1), (2) with matrices (9-11) satisfy the
mequality

*2 wk —|— —5 b2 (wg) <'y*2 (14)
b
i=1

a; j=1 J k=1

where v* s the least value of ~, such that P
and Y are non-negative matrices and condition

(12) holds.

From inequality (14) it follows that, if v* < 1,
system (1), (2) with coefficients (9) satisfy require-
ment (7) on amplitudes of forced oscillations.

The assertion is a generalization of the theorem
5 in (Alexandrov and Chestnov, 1998, part II)
whose proof based on a lemmain (Alexandrov and
Chestnov, 1998, part I). If in proof of lemma a fre-
quencies number (p) is equal to infinity (p = o0 )
and Cauchy-Bunyakovski’s inequality is not used
then proof the assertion is a repetition of proof of
theorem 5.

4. THE FIRST INTERVAL OF ADAPTATION
4.1 Frequency Domain Parameters of Plant.

Let, for simplicity, plant (1) be asymptotically sta-
ble and its observability indices v; (z = W) are
known. To find matrices A, B and C the plant
is excited by the following test signals

)= 2 sheinit e
to+ (G — D)l <t < to + jr1,

where Pk (_] =1,m, k= I,—n) is the specified
amplitude of the k-th harmonics of test signal
for the j-th experiment, wj (k = I,_n) is the
specified test frequency [w} # 0 (k = I,_n) and
wi #wi (i #j)], e; is the j-th column of a
identity matrix E,, , 718 is a duration of the j-
th experiment, 7[!1 is a given number such that
to + m7tl = ¢; . This number may be found by
experiment on the base of necessary conditions of
identification convergence.

Dlallt OULpuls g, v) \J— 4, 7o) alc applicil Lo =
puts of the Fourier’s filter, whose outputs give the
estimates

tojrl!
. 2 .
Qijp = o / y;: () sinwy (t —to) dt,
" to+(j—1)7l1
5 totjrlH (16)
Bz’jk = / y;i(t) coswi (t — tp) dt,
" tot(j—1)71 .
1= 1’ r’ j = 1’ m’ k = ) n’

for elements o3, and Bi;r of matrices A, =
ReW(jwi) and Bi = ImW(juw}) (k:l,_n)
which are named Frequency Domain Parameters
(FDP) (Alexandrov, 1989) of plant (1), where
W (s) = C(Es — A)~!B is its transfer matrix.

4.2 Plant Identification.

The estimates of matrices A, B and C of
plant (1) are searched in Luenberger’s canonical

K K

B and C
- - K

(i,j =1, r) of matrices A

form and these are denoted AK
Blocks Afj

)
K
and c;;

LK
and C  have the following structure

00 - 0 —df
10 -0 —d}
Al 01 - 0 —d¥®
0 0 1 —dY
o)
0 0y (17)
0 —d\
~ K "
Aigg = [ 0 : ;
00 - 0 —dbi™Y
00 - 0 0
éZIZf — ( 0 .- 0 1)’ylj:min(1/2,l/]),
ézK>j :<0 - 0 _dij>a éZK<j:

To find the coefficients of matrices Al = AK

bl

Bl — BK and cl = CK the following fre-
quency equations of identification (Orlov, 2000)
m l/k—l r l/)”—l

S80S A 4 = ) ki)
i=15=0 i=1 7=0

are solved and coeflicients cil(f) and ciij are cal-

culated as
k Ak ST
>:f§j>_ > fidy (19)
I=j+1 _
k= 01/” i_lrjzl,r.
Vk] pDi—1) _
k=j+1

t=5+1,r j=1r—2,



Here 1, —| hesje; limsye; --- hes, e; 1lms,; e; |
and h{")=[Refs|w; (s0] Tms]wi (1] - Rels] wi (5]
Im[sﬁlﬁ;i(sn)]]T, e; and w;(sy) are the i-th row
of a matrices F,, and ﬁ\f(sk) = -Ak + jBk re-
spectively, sp = jwi (k = I,_n) , Up<i = Vg and

(4)

Ups; = min(vy + 1,v5), §; are coefficients of

matrix B~ . For convenience, equations (18) are
derived in appendix.

4.3 Hypothetical model of closed-loop system.

Matrices A2 B and € of controller (8)

C
for the second interval of adaptation are found by

formula (9) after solution of Riccati equations (10)
and (11) in which matrices A = Al p = pll
and C = C[l], the components of matrices @Q
and R are determined from inequalities (13),

Q,=E, and y=~".
The plant and controller
:iz:A[l]az—i—B[l](u—l—w),

T, = A[cz]azc + B[cz]y + Lol

y==2=Clg, t>t1,(21)
u=CHz, (22)

are named the hypothetical closed-loop system. In
Luenberger’s canonic form this system has the fol-
lowing view

z=Az + Lv + Bw, y=Cz, (23)

whose blocks Aij and ¢;; (i:ﬁ, j:ﬁ)
have view (17) where cil(f) ,
substituted by CZZ(»E), Jij, v; and v;; v; are in-
dices of an observability of the hypothetical sys-

tem (>i_,v; =2n).

di; , v; and v; are

5. THE SECOND INTERVAL OF
ADAPTATION

5.1 The Frequency Domain Parameters of Closed-
loop System.

Let system (1), (22) be excited by m -vectors of
test signals

2n
vgz] t) = Z Pirsinwit - e;,
k=1
t+ (G- <t <ty + 570

j=T,m,(24)

where p7, (_] = I,—m) is amplitude and wy is fre-
quency of the k-th harmonic (k = m) of test
signals [w} # 0 (k=T1,2n) and w! # wi (i #
7)1, t1 +m7l =15 . Duration of each experiment

A=A 4 K, (25)
where K 1is a given positive number.
Components of vectors y; (1) (_] =1,m) are ap-

plied to inputs of the Fourier’s filter whose outputs
give the estimates

tatjrl
. 2 )
I/z]k:m / yﬂ(t) Slan(t—tl) dt,
e
5 ti4jrl (26)
ﬂijk:m y;i(t) coswi (t—t1) dt,
)
t=1,r, 7=1,m, k=1,2n,

for elements v;;; and gy of matrices Vi =
ReW(jwy) and My = ImW(wy) (k:l,?n)
of Frequency Domain Parameters (FDP) of the
closed-loop system. Here

W (s) = [B, —W (s)W.(s)] 7 W (s)Wo(s), (27)

where W.(s) = cl (Es — Al
W, (s) = CH(Es — AP

5.2 Closed-loop System Identification.

Solve the following system of frequency equations

m Dr—1 . r 17’“_12 RPN [y N
S 43 S ) k=
i=15=0 i=1 7=0
| (25)
where il(»]) =[ Re 5{62' Im 5{62' Re §gnei

Im§‘gnei ]T and fll('j) = [ Re[g‘{ﬁ;i(&)] Im[§{~
aw;(51)] - Re[dh,w;i(52,)] Tm[5h, wi(520)] ] 7

e; and ﬁ;l(§k) are the i-th row of matrices

o

E, and W(5) = Vi + j.//\\'ik respectively,
S = i (k=T1,2n), Uhei = v and Py =
min(7, + 1,7;) . Tt gives the coefficient estimates
df) (k=0 -1, i=T,r, j=Tr) and I}
(k =0,p;,—1, i=1,r, j= I,—m) of the closed-
loop system in the Luenberger’s canonic form

:fz:j&:i—i—iv[z]—l—éw, y:é:i, (29)

whose blocks j&ij and éij (i:ﬁ, j:ﬁ)
(k) 3

have view (17) where dij , dij, vy and v are

substituted by cz(»f), Cz'j, vij and v; , where jz(f)

and ciij are found on the base of expressions which
is analogous (20) and (19).

5.8 Conditions of adaptation completion.
Compare the hypothetical and identified systems

(23) and (29) and examine the following inequali-
ties
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means as follows a +b = |a—b|/|b] if 6 £ 0 or
a+b=|a|l if b=0.

If these inequalities are fulfilled then adaptation
is ended and therefore N = 2 and matrices of
controller (2) are: A. = AP B. = B and
c.=cH.

If the contrary is the case (which means that iden-
tification accuracy which is obtained on the first
interval of adaptation is not sufficiently) two sit-
uations are possible: a) system (1), (22) is stable,
b) this system is unstable. Consider each of these
situations.

In the case a) matrices \A/k and //\'\ik of the
closed-loop FDP estimates are used for im-
provement matrices Ay, and By (k:l,_n)
of the plant FDP estimates. To this effect
the following almost obvious relation serves

Ai + 3B = [Vi + gMy]- k=TT7(31)
AW (5) Ve M AW, ()}
Replacing in expression (31) the matrices Vy,
and My by their estimates, the new matrices
.Ak and Bk (k :L—n) are calculated and
matrices Al , BP and ¢! are found as

a solution of frequency equations (18). Then
the Riccati equations (10) and (11) are solved
and matrices A[CS], B[CS] and C[CS] are calcu-
lated and so on.

In the case b) it need disconnect controller (22)
and on the third interval the plant (1) is ex-
cited by test signals (15). However, duration
of each test 7[3! has to be more then the du-
ration of the first interval and that is why

Bl =P K (32)

Under this condition the plant (1) is identi-

fied, matrices A[?’], BP! and P! are found
and soon.

6. ADAPTATION PROCESS
CONVERGENCE

Introduce the filterableness functions (Alexan-

drov, 1998)

5 totjT
o (1) = yii (1) sinwy (t — to) dt,
)= [ e =)
to+(j—1)7
5 tot+jT (33)
Vi = g (t t—t1g) dt
)= [ st —1o)dt
to+(j—1)7
t=1,r, 7=1,m, k=1,60n,

O HIUlvivalldable pldlits. 1 HEsC 4l roulich s 1lveln
outputs, whose the inputs are the “natural” out-
puts of plant (1), when « = 0 (or system (1), (8),
when ol*l = 0); Pik = Pl we =wp, 0=1 (or
p]k:p;/ka wk:wZa 9:2)

A disturbance w(¢) is named FF-filterable if there
exists time of filtering 7% such that the following
conditions hold

£ (T oo(r

| Z]k( )| SE?, | z]k( )| SEZ,

lavijn(T)] |8k (T)] (34)
=17, j=1m, k=160n t>717,

where e and EZ (k’:l,@n are given numbers.
Disturbance w(t) is strong FF-filterable when

: o _ 1 6 —
Tlggoﬁk(ﬂ - Tli{?o Eijk(T) =0, (35)
=17, j=1,m, k=1 6n.

If disturbance is FF-filterable then errors Aa;j;r =
aijk — aijr and  ABij = Bijk — Bijk (i: 1,7,
j=1,m, k=1, Hn) satisfy the following inequal-
itles

[Aciji(7)] < e | ABiji (7)] <<
|cvijr(7)] |Bijk(7)] (36)
i=1,r, j=1,m, k=1,0n, 7>71*%
and for the strong FF-filterable disturbance
lim Aa;ix(r) = lim ABp(r) =0
T—00 J ( ) T—00 J ( ) (37)

i=T,r, j=1,m, k=1, 0n.

For errors Aw;;, and Ay the expression anal-

ogous (36) and (37) takes place.

It is easly examined that if frequencies of a distur-
bance and test signals do not coincide:

£l wp £
=T, k=T, %

W

X

—

1=1,n

then w(t) is strong FF-filterable.

Adaptation process converges if a time T > 7*
is reachable. From expression (25) and (32) for
determination of test duration it follows that for
any given value K there always exists number N
such that any T is reached.

It 1s almost obvious as follows

Assertion 2 If disturbance w(t) is strong FF-
filterable and

= - g k=T N, (39)

then adaptation process converges and require-
ments (7) hold, if the disturbance is FF-filterable
then fulfilment of (7) depends on numbers &y
and EZ (k = m) and on analogous numbers for
closed-loop system.
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system y;;(t), (z =1,r, j= I,—m) use for choice
of amplitudes of test signal from the following con-
ditions (Alexandrov, 1998) of “small excitation”

y]z()_y]z()<éa i:ﬁ Jj=1m,

where £ is a given number.

7. CONCLUSION

In this paper a new technique of adaptive con-
trol for a multivariable plant in the presence of
the bounded polyharmonic disturbance (3) is pro-
posed. The adaptive control is provided the re-
quirements (7) to accuracy.

The technique 1s based on an experimental deter-
mination of the plant and closed-loop system FDP
excited by “sufficiently small” test signals.

It consists of intervals on which the plant or
closed-loop system are identified. Adaptation pro-
cess is stopped when requirements (30) to nearness
of the hypothetical and identified closed-loop sys-
tem are fulfilled. Convergence of adaptation is
proved.
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APPENDIX

System (18) follows from input-output description
of polynomial matrices W(s) = F~*(s)G(s) that
may be rewritten as
(G<0>T LeWTs .y G(W)Tsv) -
Nl
—wT(s) (F<0>T+F<1>T5+. . ._|_F(77)T5n) —0.

Substituting in (A.1) s = s = jwp, Wi(sg) =
Wi, = Ai + 3B (k’ = I,—n) , 1t 1s easily obtained

the following system

Re 5‘2 GUT_
0 J
Im 5‘2 GUIT_
0 J

-

{Re sk.AT—Im skBT} FUT =

-

I
o
3~
al
—_

-

I
o

]~

[Imsi.AT—l—Re siBT}F IT 9

.
I

The system has a infinity set of solutions: FU) =
Hfi(g)*ﬂ eER™ (i=0,7) and GU) = Hgfi)*ﬂ c
R (z = W) . Tt is proved (Orlov, 2000) that
solution of this system is unique if coefficients of

polynomial matrices F(s) and G(s) is searched
in the following form

Jii(s) = 1 +f“1 s+ +f””’_1 y,_1+5y,
Jiri(8) = £ + ) s £
’ Toy "y ey o A2
gik(s) = 9,5, —|—g S+t s

t=1,r, j=1r, k=1,m.

l/,j—l




