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Abstract: Linear stable plant with unknown coefficients in the presence of an
unknown-but-bounded disturbance is considered. Finite-frequency technique for
identification of the plant makes use of a test signal with minimal quantity of
harmonics (this value is equal to a plant state-space dimension). It is shown, if
frequencies of the test signal are chosen outside a natural frequencies band (where
log magnitude of plant has corner frequencies) then identification results may very
strongly depend on errors of a frequency characteristics determination. In order to
find a estimate of the boundaries of the natural frequencies band a procedure of
selftuning of test signal frequencies is given. Test signal amplitudes are selftuned as
well. It provides the prescribed boundaries of the input and output plant. Copyright
c©2005 IFAC
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1. INTRODUCTION

In the last decades, various identification meth-
ods were developed for control plants subjected
to unknown-but-bounded external disturbances
and noises. These are the instrumental-variable
method (Wong and Polak, 1967;Tsypkin and
Poznyak, 1989;Ljung, 1999), finite-frequency iden-
tification (Alexandrov, 1994), randomized algo-
rithms (Polyak and Granichin, 2003;Bunich and
Bakhtatze,2003). In these methods, a test signal
is used which is formed before the identification is
initiated, using an a priori information about the
parameters of the plant, disturbance, and noise.
The test signal has to be independent on distur-
bance and noise and the plant output has to be in
the prescribed limits.

Since the form and the parameters of a test
signal affect essentially the accuracy and duration
of identification, selftuning of this signal in the

process of identification is required when a priori
information is little.

In finite-frequency identification, the test signal
is a sum of harmonics with given amplitudes and
frequencies; their number is equal to the state-
space plant dimension. In order to provide the
limits on the input and output plant, selftuning
of the amplitudes is required. Selftuning of test
frequencies is needed as well, since it is intuitively
clear that they have to be chosen from an interval
(natural frequency band), where corner frequen-
cies of log magnitude of the plant are located;
however this interval is not known. A method of
the experimental estimation of the natural fre-
quency band was proposed in (Alexandrov, 2001),
which is the basis of a procedure of the frequencies
selftuning described here.

The paper consists of two parts. In the first
part, it is shown that if the test frequencies are



taken outside the natural frequency band, then
the results of identification may depend heavily
on errors in the determination of the frequency
characteristics. In the second part, the procedure
of selftuning for test signal is proposed.

The paper is organized as follows. First, the finite-
frequency identification technique is described.
Next, in Section 3, the problem of test signal
selftuning is formulated. Section 4 is devoted to
the analysis of sensitivity of the identification
results to the choice of test frequencies. Finally,
the procedure of test signal selftuning is given in
Section 5.

2. PRELIMINARIES

A completely controllable, asymptotically stable
plant is described by the following equation:

dny(n) + · · ·+ d1ẏ + y =
kγu(γ) + · · ·+ k1u̇ + k0u + f, t ≥ t0,

(1)

where y(t) is the measured output, u(t) is the in-
put to be controlled, y(i), u(j)

(
i = 1, n, j = 1, γ

)
are the derivatives of these functions, f(t) is
unknown-but-bounded disturbance. The coeffi-
cients di and kj

(
i = 1, n, j = 0, γ

)
are some

unknown numbers; n and γ are known, and γ < n.

The identification problem is to find estimates d̂i

and k̂j

(
i = 1, n, j = 0, γ

)
of the plant coefficients

such that the identification errors satisfy the fol-
lowing relations:

d̂i ÷ di ≤ εd
i , k̂j ÷ kj ≤ εk

j i = 1, n j = 0, γ,(2)

where εd
i and εk

j

(
i = 1, n, j = 0, γ

)
are given

numbers, and the symbol ÷ means: a ÷ b = |a −
b|/|b| if b 6= 0 and a÷ b = |a| otherwise.

Let us consider the finite-frequency identification
technique, which gives a solution to this problem.

A set of 2n numbers

αk = Re w(jωk), βk = Imw(jωk), k = 1, n,(3)

where

w(s) =
kγsγ + · · ·+ k0

dnsn + dn−1sn−1 + · · ·+ 1
(4)

is called the frequency domain parameters (FDP).

The FDP estimates are determined experimen-
tally as follows: after the plant (1) is excited by
the test signal

u =
n∑

k=1

ρk sin ωk(t− t0), t ≥ t0, (5)

where the amplitudes ρk

(
k = 1, n

)
and test fre-

quencies ωk

(
k = 1, n

)
are specified positive num-

bers, its output is fed to the Fourier filters, whose
outputs give the following FDP estimates:

α̂k =αk(τ)=
2

ρkτ

tF+τ∫

tF

y(t) sin ωk(t−t0) dt,

β̂k =βk(τ)=
2

ρkτ

tF+τ∫

tF

y(t) cos ωk(t−t0) dt,

k=1, n, (6)

where τ is a filtering time and tF ≥ t0 is the initial
instant for filtering.

In order to formulate conditions on the conver-
gence of the FDP estimates (6) to the true FDP,
the following functions are introduced:

`α
k (τ)=

2
ρkτ

tF+τ∫

tF

ȳ(t) sin ωk(t−t0) dt,

`β
k(τ)=

2
ρkτ

tF+τ∫

tF

ȳ(t) cos ωk(t−t0) dt,

k=1, n, (7)

where ȳ(t) is the “natural” output of the plant
when the test signal (5) is absent (u(t) = 0).

Definition 2.1. A disturbance f(t) is called strongly
FF-filterability if, for the given numbers δα and
δβ , there exists filtering time τ∗ such that

|`α
k (τ∗)|

|αk(τ∗)| ≤ δα,

∣∣∣`β
k(τ∗)

∣∣∣
|βk(τ∗)| ≤ δβ ,

k = 1, n, τ ≥ τ∗,

(8)

Conditions (8) can be examined by experiment.

If the disturbance f(t) is strongly FF-filterability,
then the filtering errors ∆αk(τ) = αk − αk(τ),
∆βk(τ) = βk−βk(τ)

(
k = 1, n

)
have the following

properties: limτ→∞∆αk(τ) = limτ→∞∆βk(τ) =
0

(
k = 1, n

)
.

The estimates of the plant coefficients are found
on the basis of the FDP estimates. In fact, the

identity w(s) =
k(s)
d(s)

and expressions (3) give the

following system of the linear algebraic equations:

k̂(sk)− (αk + jβk) ˆ̄d(sk) = αk + jβk k = 1, n,(9)

where ˆ̄d(s) = d̂(s)− 1 = d̂nsn + · · ·+ d̂1s, k̂(s) =
k̂γsγ + · · ·+ k̂1s + k̂0, sk = jωk

(
k = 1, n

)
.

Assertion 2.1. If the plant (1) is completely con-
trollable, then system (9) has a unique solution di,
kj

(
i = 1, n, j = 0, γ

)
which does not depend on

the choice of the frequencies ωi (ωi 6= ωj (i 6= j),
ωi 6= 0

(
i = 1, n

)
).



Substituting the FDP by their estimates, the
following frequency equations of identification

k̂(sk)− (α̂k + jβ̂k) ˆ̄d(sk) = α̂k + jβ̂k k = 1, n,(10)

are obtained.

In order to examine requirements (2), the fre-
quency techniques of model validation (Alexan-
drov, 1999) may be used.

3. PROBLEM STATEMENT

Above it has been assumed that the amplitudes
and frequencies of test signal (5) are given. In
order to specify of them a priori, it need a large
volume of information about plant (1). In fact,
first,the plant output and input are bounded by
given numbers y∗ and u∗:

|y(t)| ≤ y∗, |u(t)| ≤ u∗, t ≥ t0, (11)

where y∗ such that

|ȳ(t)| < y∗, t ≥ t0. (12)

The conditions (11) are provided by a choice of
the amplitudes ρk

(
k = 1, n

)
signal (5).

Second, it is intuitively clearly that test frequen-
cies have to be chosen from a frequencies interval,
where corner frequencies of log magnitude of the
plant (a natural frequencies band), are placed.
At first glance, it contradicts the assertion 2.1,
however, the assertion describes properties of the
equations (9) but for identification the frequency
equations (10), where the FDP’s are substituted
by their estimations, are used. In order to in-
troduce a notion of a natural frequencies band,
transfer function of plant (1) is represented as

w(s) = k

p1∏

i=1

(s + ω1,i)
p2∏

i=1

(
s2 + 2ξi,2ωi,2 + ω2

i,2

)

p3∏

i=1

(s + ω3,i)
p4∏

i=1

(
s2 + 2ξi,4ωi,4 + ω2

i,4

) .(13)

A set L = { |ω1,1|, |ω1,2|, . . . , |ω1,p1 |; |ω2,1|, |ω2,2|,
. . . , |ω2,p2 |; ω3,1, ω3,2, . . . , ω3,p3 ; ω4,1, . . . , ω4,p4}
is called a natural frequencies of the plant (1).

The lower (ωl) and upper(ωu) boundaries of the
natural frequencies are marked as

ωl = min L and ωu = max L.

Denote Ωl = {ω : ω ∈ (0, ωl)},
Ω = {ω : ω ∈ [ωl, ωu]}, Ωu = {ω : ω ∈ (ωu,∞)}.
In the next section, it is shown that, if the test
frequencies are taken from low-frequencies band(
ωk ∈ Ωl, k = 1, n

)

or upper-frequencies band
(
ωk ∈ Ωu, k = 1, n

)
,

then small errors of the filtration may give large
errors of identification and therefore a part of
the test frequencies have to lie into the natural
frequency band

(
ωk ∈ Ω, k ∈ 1, n

)
.

Problem 3.1. Find a way of the amplitudes and
frequencies self-tuning of the test signal (5) such
that the plant output and input satisfy the
requirements (11) and a part of the test fre-
quencies were into the natural frequencies band(
ωk ∈ Ω, k ∈ 1, n

)
.

A solution of the problem is based on the following
assertion (Alexandrov,2001).

Assertion 3.1. Let plant (1) be exited by the test
signal u(t) = ρ1 sin ω1(t − t0) and its output is
fed to the Fourier’s filter (6) (n = 1). There exist
a sufficiently large filtering time τ = τ∗ and a
sufficiently small test frequency ω1 ∈ Ωl such that
a number

ω̄l(τ∗) =
∣∣∣∣
ω1α1(τ∗)
β1(τ∗)

∣∣∣∣ (14)

is nearly to the lower (ωl) boundary of natural
frequencies (the nearness depends on ω1, τ∗ and
a difference of ωl and a natural frequency that is
nearest to ωl).

A analogous assertion is proved for the estimate of
the upper boundary (ω̄u) of the natural frequen-
cies band.

4. SENSITIVITY ANALYSIS OF
IDENTIFICATION ERRORS

Denote the maximal relative errors of filtration
and identification as

ηα,β=max
1≤k≤n

{
α̂k ÷ αk , β̂k ÷ βk

}
(15)

ηd,k=max
1≤k≤n

{
d̂k ÷ dk , k̂k ÷ kk

}
(16)

respectively.

Definition 4.1. Number C =
ηdk

ηαβ
is called a

sensitivity coefficient of identification errors with
respect to filtration errors.

Assertion 4.1. There exists a set of the test fre-
quencies ωk ∈ Ωl

(
k = 1, n

)
and the strongly FF-

filterability disturbance f(t) such that the sen-
sitivity coefficient C is greater than any given
positive number C∗ (C > C∗).



A proof of this assertion is based on two assertions
(properties) and a lemma that are formulated
below.

Using transfer function (4) the following expres-
sion for the FDP is obtained

αk =

[n+γ
2 ]∑

q=0

l2qω
2q
k

n∑
q=0

mqω
2q
k

, βk =

{n+γ
2 }−1∑
q=0

l2q+1ω
2q+1
k

n∑
q=0

mqω
2q
k

,(17)

(
k = 1, n

)
, where `0 = k0, `1 = k1 − k0d1, . . ., [·]

and {·} are integer numbers nearest to · such that
[·] ≤ · ≤ {·}.
The FDP (17) can be approximated by

αl
k = l0, βl

k =
{n

2 }−1∑
q=0

l2q+1ω
2q+1
k , k = 1, n.(18)

The following assertion is almost obviously.

Property 4.1. For any small number δl > 0 there
exists a set of the test frequencies ωk ∈ Ω`(
k = 1, n

)
such that

αl
k ÷ αk < δl, βl

k ÷ βk < δl k = 1, n. (19)

The FDP estimates may be represented as

α̂k = αl
k + εl

α(ωk) + ∆αk(τ),
β̂k = βl

k + εl
β(ωk) + ∆βk(τ),

(20)

where εl
α(ωk) = αk −αl

k and εl
β(ωk) = βk − βl

k(
k=1, n

)
.

Lemma 4.1. For the specified test frequencies ωk(
k = 1, n

)
there exists a strongly FF-filterability

disturbance f(t) and filtration time τ∗ such that
the following equalities

εl
α(ωk)=−∆αk(τ∗)

εl
β(ωk)=−∆βk(τ∗)

k = 1, n (21)

hold.

The lemma proof is given in Appendix.

The equalities

α̂k = αl
k, β̂k = βl

k, k = 1, n, (22)

follow (20), where τ = τ∗, and conditions (21).

Property 4.2. If the FDP estimates have the view
(22) then the solution of frequency equations (10)
is unique and it has the following view

d̂i = 0, i = 1, n. (23)

Proof of this property is bulky (for shortness it
is omitted), but its idea may be explained by an
example when n = 2. In this case the frequency
equations (10) are rewritten as

k̂0 + ωkk̂1 − (α̂k + β̂k)(ωkd̂1 − ω2
kd̂2) =

= α̂k + β̂k, k = 1, 2.
(24)

In accordance with expression (18) the FDP esti-
mates α̂k = l0 and β̂k = l1ωk

(
k = 1, 2

)
and then

the system has the obvious solution d̂1 = d̂2 = 0,
k̂0 = l0, k̂1 = l1. This solution is unique since
the determinant of the system is equal to [l1(ω1−
ω2)(ω1 + ω2)]2 and it is not zero.

Now using properties 4.1 and 4.2 and lemma 4.1
the assertion 4.1 can be easily proved. In fact, let
any large number C∗ be specified. Take δl = 1/C∗

and find the frequencies ωk ∈ Ωl

(
k = 1, n

)
for

which the inequalities (19) are fulfilled.

The equalities (23) give ηdk ≥ 1. On the other
hand, the expressions(19) and (22) give ηαβ < δl

and therefore the assertion 4.1 is proved.

5. PROCEDURE OF SELFTUNING

During process of selftuning of the test signal, the
plant (1) is exited by the following test signal

u(t) = ρ
[j]
[i] sin ω[i](t− t0), (25)

t
[j−1]
[i] ≤ t < t

[j]
[i] , t

[0]
[i+1] = t

[n[i−1]]

[i] ,

i = 1, nω j = 1, n[i],

where i
(
i = 1, nω

)
is a number of a tuning fre-

quency interval, j
(
j = 1, n[i]

)
is a number of a

tuning amplitude subinterval.

Durations of all subintervals are equal

T[i] = t
[j]
[i] − t

[j−1]
[i] =

2π

ω[i]
p[i], i = 1, nω,

where p[i]

(
i = 1, nω

)
are given numbers.

Procedure 5.1

(1) Feed to the plant (1) signal (25) with a given
sufficiently small frequency ω[1] = ω∗ and
an amplitude ρ

[0]
[1] = u∗; examine the first

condition (11). If it is satisfied,the searched
amplitude is found. Otherwise, put ρ

[1]
[1] =

u∗/δ, where δ > 1 is a given number, and



so on until the condition (11) is satisfied for
ρ
[n[1]]

[1] = ρ∗.
Measure the outputs α1(τ∗) and β1(τ∗)

of the Fourier’s filter (6), where n = 1,
ρ1 = ρ∗, ω1 = ω[1] (a way of determination
of filtering time (τ∗) from the conditions (8)
of the strongly FF-filterability is given after
the procedure).

(2) Calculate the lower boundary estimate ω̄l(τ∗)
by formulae (14).

(3) Repeat the operations 1-2, putting in the
signal (25): ω[2] = ω[1]/δω, where δω > 1 is a
given number and find new lower boundary
estimate – ωl(τ∗∗); examine the condition

ˆ̄ωl(τ∗)÷ ˆ̄ωl(τ∗∗) ≤ εω, (26)

where εω is a given sufficiently small number.
If inequality (26) is satisfied then the

searched ˆ̄ωl = ω̄l(τ∗∗). Otherwise, put ω[3] =
ω[2]/δω and so on until the inequality is sat-
isfied.

(4) Repeat the operations 1-3 for a sufficiently
large frequency ω[1] and find the upper
boundary estimate ˆ̄ωu of the natural frequen-
cies of the plant.

(5) Choice the n frequencies of a set ˆ̄Ω ={
ω : ω ∈ [ ˆ̄ωl, ˆ̄ωu]

}
(for example, calculate of

them as ω1 = ˆ̄ωl, ωk = ˆ̄ωl +
ˆ̄ωu − ˆ̄ωl

n− 1
(k − 1)

(
k = 2, n

)
); repeat operation 1 for each fre-

quency ωk

(
k = 1, n

)
; find the FDP estimates

α̂k, β̂k

(
k = 1, n

)
; solve the frequency equa-

tions (10), that gives the plant coefficients
estimations.

Form the vector L of the natural frequen-
cies of the identified plant, find a set of these
frequencies Ωid. If ωk ∈ Ωid

(
k = 1, n

)
than

the selftuning is ended. Otherwise, repeat the
procedure 5.1, decreasing the numbers δα,
δβ and εω, until the requirement ωk ∈ Ωid(
k = 1, n

)
is satisfied.

In order to find the filtering time τ∗ for opera-
tion 1, this operation is formed from the pause-
intervals, where ρ

[j]
[i] = 0, and the test-intervals,

where ρ
[j+1]
[i] = ρ∗.

Let τ∗ = T[1]. Using the outputs of filters (6) and
(7), the inequalities (8), in which δα and δβ are
given numbers, are examined. If they are satisfied
than τ∗ = T[1]. Otherwise, the operation 1 is
repeated for τ∗ = T[1]δT , where δT > 1 is a given
number, and so on until the conditions (8) are
satisfied.

Remark 5.1 The described way of finding of the
filtration time τ∗ serves for an experimental test
of the a priori assumption about the strongly FF-
filtrability of the disturbance f(t). If the filtering
time τ∗, for which the conditions (8) satisfy, does

not exist then the frequency ω[1] is changed until
the conditions (8) are satisfied.

Let us introduce a class of disturbances f(t)
for that convergence of procedure 5.1 is readily
proved.

Definition 5.1. The disturbance f(t) is contigu-
ously stationary if

max
t
[j−1]
[i] +tF≤t≤t

[j]
[i]

|ȳ(t)| ÷ max
t
[j]
[i]+tF≤t≤t

[j+1]
[i]

|ȳ(t)| ≤ εy,(27)

where εy is a given sufficiently small number.

The following assertion is almost obviously.

Assertion 5.1. If the disturbance f(t) is contigu-
ously stationary and the strongly FF-filterability
then procedure 5.1 converges to the frequencies
ωk ∈ Ωid

(
k = 1, n

)
and the requirements (11) to

the input and output plant are satisfied.

Remark 5.2. The number εy may be essentially
enhanced, if the amplitude of signal (25) is tuned,
when the filtration time τ∗ is searched.

MATLAB-function “Finite-frequency identifica-
tion” was created (Alexandrov and Orlov, 2005)
on the base of the procedure 5.1. Applications of
this function show its effectiveness.

6. CONCLUSION

In this paper is shown that, if the frequencies of
the test signal (5) are chosen outside of the natural
frequencies band of plant (1), then the sensitivity
of identification results to filtration errors may be
very high (assertion 4.1).

In connection with it, the finite-frequency method
is added by the procedure 5.1. This procedure (by
selftuning of the test frequencies) gives the part of
the test frequencies into the natural frequencies
band. In addition, in order to carry out the
requirements (11) to boundaries of the input and
output plant, the selftuning of the test signal
amplitudes is proposed.

This development of the finite-frequency method
gives new possibilities for identification of the real
plants.
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APPENDIX

A.1 PROOF OF LEMMA 4.1

Let disturbance f(t) have the form

f(t) =
2n∑

k=1

ρf
k sin ωf

k (t− t0), t ≥ t0, (A.1)

where ρf
k and ωf

k

(
k = 1, 2n

)
are unknown num-

bers that should be determined from conditions
(21) and inequalities

ωf
i 6= ωj i = 1, 2n j = 1, n, (A.2)

which signify that disturbance (A.1) is strong FF-
filterable, amplitudes ρf

k

(
k = 1, 2n

)
satisfy the

following inequalities

2n∑

k=1

|ρf
k | ≤ f∗ (A.3)

where f∗ is given number Filtration errors have
the following structure

∆αk(τ)=eα
k (τ) + `α

k (τ),
∆βk(τ)=eβ

k(τ) + `β
k(τ),

k = 1, n, (A.4)

where eα
k (τ) and eβ

k(τ) are vanished functions.

In order to find functions `α
k (τ) and `β

k(τ)
(
k = 1, n

)
function ȳ(t) is necessary. To this effect the equa-
tion (1) rewritten in state space as

ẋ = Ax + ψf, ȳ = cT x, (A.5)

where A is a matrix, ψ, c are vectors.

The solution of these equations under condition
(A.1) is

ȳ(t) =
2n∑

k=1

ρf
k

[
αf

k sin ωf
k (t− t0)+

+βf
k cos ωf

k (t− t0) + æ
(
t, ωf

k

)]
+ æ0(t),

(A.6)

where αf
k = Re wf (jωf

k ), βf
k = Im wf (jωf

k )(
k = 1, 2n

)
, wf (s) = cT (Es−A)−1ψ,

æ
(
t, ωf

k

)
=cT eA(t−t0) Im(jωf

k −A)−1ψ,

æ0(t)=cT eA(t−t0)x(t0).
(A.7)

Substituting function (A.6) into the expression (7)
and taking account (A.4) and equalities (21) the
following system of the linear algebraic equations
for determination of the amplitudes ρf

k

(
k = 1, 2n

)
is derived

2n∑

i=1

qα
ki(τ

∗)ρf
i = −εl

α(ωk)− eα
k (τ∗)− qα

k0(τ
∗)

2n∑

i=1

qβ
ki(τ

∗)ρf
i = −εl

β(ωk)− eβ
k(τ∗)− qβ

k0(τ
∗)

k = 1, n, (A.8)

where qα
k0(τ

∗) and qβ
k0(τ

∗) are vanished functions.

Choosing a filtration time τ∗ and the disturbance
frequencies ωf

i

(
i = 1, 2n

)
from interval (0,∞),

when the test frequencies ωk and amplitudes ρk(
k = 1, n

)
are specified, a unique solution of sys-

tem (A.8) may be always obtained. For the con-
dition (A.3) to fulfill the numbers εl

α(ωk) and
εl
β(ωk) in the right parts of equations (A.8) must

be decreased by a decrease of the frequencies ωk(
i = 1, n

)
. It is easily shown that the coefficients of

the left parts of this equations are almost indepen-
dent on the frequencies ωk

(
i = 1, n

)
if frequencies

ωf
i

(
i = 1, 2n

)
puts sufficiently large.


