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Abstract: Managed pressure drilling process is descried by nonlinear model. Nonlinear
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synthesize controller. Dynamic algorithm of frequency domain identification is used to estimate
this parameter value.
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1. INTRODUCTION

Drilling fluid (mud) is pumped into the drill string during
the drilling process. Hydrostatic pressure due to the weight
of the mud and dynamic pressure from the pump both
affect the drilling bit to overcome the rock resistance. The
drilling mud from the drill string flows through the drilling
bit to the annulus and rises to the surface taking out
cuttings and cavings. The mud is recycled and returned
back to the mud pit again.

The bottom hole pressure (BHP) must be controlled,
let’s denote this pressure pb. BHP should be maintained
within ”drilling window”. The drilling window limits are
determined by geology of the well area and formation
features. Actual pressure profile is almost always different
from the theoretical one during real drilling, it can be
substantially narrower or cause various other difficulties
during drilling. The BHP must be rapidly changed in these
cases.

Many technologies have been designed to improve the
quality of the drilling process. Managed pressure drilling
(MPD) is one of them. The main feature of this technology
is sealing of the wellhead and installation of the choke valve
to control the drilling mud flow through the annulus. There
are a number of different approaches to the the choke
valve control problem. Most of them are based on the are
based on adaptive control laws. In (Mahdianfar, H. et al.
(2013)) modified Kalman filter is proposed to be used for
estimation of the BHP. The filter parameters are adapted
to changes in the system. In (Nygaard, G. et al. (2006))
known scheme based on the model predictive control is
applied. The paper considers using simplified low order
model of the drilling process to control the bottom hole
pressure in real time. In (Stamnes, Øy. N. et al. (2008);
Li, Z. et al. (2012)) the problem of maintaining BHP
within given limits is solved using an adaptive observer
for estimating unknown parameters of the drilling process

model. The L1-adaptive control algorithm is built based on
the previously mentioned process model. In (Zhou, J. et
al. (2011)) adaptive observer is used, then the control law
is designed in the form of a switch controller. Switching
instants are determined by the inequalities, that include
auxiliary parameters of the observer.

A new adaptation algorithm for choke valve control is
proposed in this paper. The algorithm is a variant of the
frequency adaptation method (Alexandrov, A. G. et al.
(2002, 2006)). Distinctive feature is the use of non-linear
control law, which requires parametric identification of
the non-linear MPD system hydraulic model. Parametric
identification is carried out using the dynamic algorithm
of finite-frequency identification (Alexandrov, A. G. et
al. (2009)), because the common finite-frequency identi-
fication algorithm makes obtaining of non-linear model
parameter from frequency domain problematic.

2. MPD MODEL

Hydraulic drilling processes are described by partial dif-
ferential nonstationary equations, their coefficients are
changed as the depth of the well increases. These partial
differential equations are usually replaced by a simple
low order dynamic model (Stamnes, Øy. N. et al. (2008);
Godhavn, J.-M. et al. (2011)). Fig. 1 shows the scheme of
the MPD drilling system. The pump uploads mud from
the pit into the drill string. Then the mud flows through
the drilling bit through the annulus to the surface. The
wellhead is hermetically sealed and all mud flows through
the MPD choke valve which enables control of the pressure
in the annulus.

The pressure dynamics in the volumes of the drill string
and the annulus are described by equations based on the
mass balance:

Va
βa
ṗc = −V̇a + qb + qres − qc, (1)
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Fig. 1. The MPD drilling system

Vd
βd
ṗp = −qp − qb, (2)

where Vd is the drill string volume, βd is the mud bulk
modulus in the drill string, pp is the pump pressure, qp is
the pump flow, qb is the flow through the drilling bit, Va
is the annulus volume, βa is the mud bulk modulus in the
annulus, pc is the pressure on the choke, qres is the influx
flow from the reservoir, qc is the flow through the choke.

The drilling bit flow equation is based on the law of
conservation of momentum:

[Ma +Md]q̇b = pp − pc − Fdq
2
b

−Fa(qb + qres)
2 + (ρa − ρd)ghb,

(3)

where Ma,Md are mass coefficients of the annulus and the
drill string, hb is the depth of the drilling bit, ρa, ρd are
average mud densities in the annulus and the drill string,
Fa, Fd are friction coefficients of the annulus and the drill
string, g is the gravity acceleration.

The equation of the flow through the choke depending on
its position is the following:

qc = kczc

√
2

ρ0
(pc − p0) (4)

where kc is the choke gain, zc is the choke position
expressed as opening/closing percentage (choke valve is
closed when zc = 0 and opened when zc = 100), p0 is the
atmospheric pressure, ρ0 is the mud density at atmospheric
pressure.

The bottom hole pressure pb is described by the following
equation:

pb = pc +Maq̇b + Fa(qb + qres)
2 + ρaghb. (5)

Most papers consider the problem of maintaining constant
bottom hole pressure pb.

3. PROBLEM STATEMENT

The equation (5) is usually simplified by assuming that
the BHP is described by the equation

pb = pc + a(hb) (6)

where a(hb) is some known function that allows determin-
ing of the bottom hole pressure depending on the well
depth. Under this assumption the problem is reduced to
maintaining of given choke pressure p∗c . The setpoint p∗c is
calculated based on the current value of a(hb) according
to (6).

Therefore based on the aforementioned assumption instead
of (1)-(3) a single equation of mass balance can be used
to describe the process dynamics. The only equation is
following:

Va
βa
ṗc = f − qc (7)

where f = qb + qres − V̇a is external disturbance, which is
assumed to be limited.

The function of the flow through the choke is described
by equation (4). The differential equation describing the
process dynamics is obtained by substituting (4) in (7):

Va
βa
ṗc = f − kczc

√
2

ρ0
(pc − p0). (8)

Denoting T =
Va
βa

, Kc = kc

√
2

ρ0
, y = pc, u = zc

the following differential equation for the MPD process
dynamics is obtained:

T ẏ = f −Kcu
√
y − p0. (9)

The problem of choke control is now to maintain the choke
pressure at a given setpoint y∗.

4. CONTROL LAW SYNTHESIS

We need to design a controller that provides stability of
the system and maintains the desired pressure y∗. Assume
that the coefficients T and Kc are known.

Let’s define a new variable

ũ = u
√
y − p0.

The process then takes the following form:

T ẏ = f −Kcũ. (10)

PI-controller can be used to control this process:

˙̃u(t) = r1ε̇(t) + r0ε(t) (11)

where ε(t) = y∗ − y(t).

Characteristic polynomial of the closed loop system can
be obtained by differentiating (10) and substituting the
control equation (11) into it:

T ÿ = −Kc
˙̃u = −Kc[r1ε̇(t) + r0ε(t)]. (12)

After applying Laplace transformation we obtain:

s2y = −Kc

T
(r1s+ r0)ε.
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Now the characteristic polynomialD(s) of the system (10)-
(11) has the following form:

D(s) = s2 − Kc

T
(r1s+ r0). (13)

Let r1 = − T

Kc
r̃1 and r0 = − T

Kc
r̃0, then finally:

D(s) = s2 + r̃1s+ r̃0. (14)

It is sufficient to choose r̃1 > 0 and r̃0 > 0 to provide
stability for the system (10)-(11). The control quality will
depend on the particular choice of values r̃1 and r̃0. For
example, to avoid overshoot, parameters r̃1 and r̃0 must
be chosen so as D(s) has real roots.

The control signal u(t) in equation (9) is expressed in
an explicit form. Therefore for practical application of
the proposed approach we need to get a formula for its

calculation. The expression for ˙̃u is:

˙̃u =
d(u
√
y − p0)

dt
= u̇
√
y − p0 +

ẏ

2
√
y − p0

u.

Then controller is described by the following equation

u̇
√
y − p0 +

ẏ

2
√
y − p0

u = r1ε̇(t) + r0ε(t)

or, after transformation:

u̇ = − ẏ

2(y − p0)
u+

1√
y − p0

(r1ε̇(t) + r0ε(t)). (15)

The equation (15) can be used to computing the control
signal.

5. IDENTIFICATION OF MPD PARAMETERS

Let’s now discard the assumption of known parameters Kc

and T . We introduce the ratio

α = −Kc

T
,

that is also unknown obviously.

Note that this ratio is only necessary for determination of
the closed loop characteristic polynomial (13) parameters
r1 and r0. Identification of the value of α is carried out
using the dynamic finite-frequency identification algorithm
(Alexandrov, A. G. et al. (2009)). During the identification
procedure test harmonic signal is fed to the system as
control signal:

u(t) = u0 + ρ sinωt, (16)

where u0, ρ and ω are chosen parameters of the test signal.

This test signal can be used to estimate the value of
parameter α. Equation (9) is converted to difference equa-

tion using substitution ẏ(t) =
y(k)− y(k − 1)

h
, where h is

given sampling period. After division of both sides of the

equation by
T

h
one can obtain:

y(k)− y(k − 1) =
hf(k − 1)

T
−αhu(k − 1)

√
y(k − 1)− p0, k = 1, 2, 3, 4, . . . , N

(17)

where N is some given number.

The equation (17) is multiplied by modulating function
sinωhk and summed for k:

N∑
k=1

[y(k)− y(k − 1)] sinωhk =

N∑
k=1

hf(k − 1)

T
sinωhk

−αh
N∑

k=1

[u(k − 1)
√
y(k − 1)− p0] sinωhk,

The estimate α̂ can now be found:

α̂ = −

N∑
k=1

[y(k)− y(k − 1)] sinωhk

h
N∑

k=1

[u(k − 1)
√
y(k − 1)− p0] sinωhk

. (18)

Equation (18) is valid because according to (Alexan-
drov, A. G. et al. (2009)) the following limit holds true

N∑
k=1

f(k − 1)

T
sinωhk

N∑
k=1

[u(k − 1)
√
y(k − 1)− p0] sinωhk

→ 0

when N →∞.

6. EXAMPLE

The system (9) with the following numerical parameters
is considered:

T = 10;Kc = 0.4309; qb = 285;

qres = 30sign[sin(0.1)t]; V̇a = 0.
(19)

Then the true value of the parameter α to be identified

is α = −Kc

T
= −0.0431. Control signal lies within the

range that corresponds to the choke valve opening/closing
percentage, namely u ∈ [0; 100].

The goal is to maintain pressure at the constant setpoint
y∗. Two problems need to be solved: identification of
parameter α with the proposed approach and synthesis
of controller for estimate of the parameter.

6.1 Identification of parameter α

Identification of parameter α is carried out in an open
loop. The test signal is:

u(t) = 50 + 5 sin(1.2t).

The offset value in the test signal is 50, it was chosen so
that the pressure of the system (19) after transient is equal
to the required setpoint y∗ = 190.

Simulation was performed with the sampling period h =
0.5 seconds. The duration of the identification was 100
seconds (N = 200). The results of the simulation are
presented in Fig. 2. The initial pressure is y(0) = 150.

Formula (18) gives the following estimate:

α̂ = −0.0425.

One can see that this estimate is close to the true value of
the parameter α.
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Fig. 2. Pressure during identification

Fig. 3. Pressure in closed loop system

6.2 Controller synthesis

One must set the characteristic polynomial (13) of the
closed loop system. Let r̃1 = 0.6 and r̃0 = 0.5, then for
previously identified α̂ = −0.0425 controller parameters
(15) become the following

r1 = −25.88;
r0 = −7.06

Finally, the controller equation is obtained:

û = − ẏ

2y
u− 1
√
y

(25.88ε̇+ 7.06ε). (20)

The simulation results of the closed loop system are shown
in Fig. 3. The parameters for the simulation were kept the
same as for the identification experiment.

The open loop system operation with the same parameters
and control value u = 50 is shown in Fig. 4 for comparison.
One can clearly see that control quality in the closed loop
system is noticeably improved.

7. CONSIDERATION OF CHOKE VALVE DYNAMICS

7.1 Control law synthesis

The choke valve drive has internal dynamics with time
constant Tz. After taking that fact into account, instead
of equation (9) one obtains the following system:

T ẏ = f −Kcu
√
y − p0

Tzu̇+ u = uc,
(21)

Fig. 4. Pressure in open loop system

where uc is the choke valve drive input signal formed by
the controller.

Let’s consider the closed loop system (21) characteristic
polynomial to synthesize the control law

T ÿ = −Kc

[
u̇
√
y − p0 + u

ẏ

2
√
y − p0

]
=

−Kc

[(
− 1

Tz
u+

1

Tz
uc

)√
y − p0 +

ẏ

2
√
y − p0

u

]
=

−Kc

[√
y − p0
Tz

uc +

(
−
√
y − p0
Tz

+
ẏ

2
√
y − p0

)
u

]
.

Finally, one obtains

ÿ =
ḟ

T
− Kc

T

[√
y − p0
Tz

uc

+

(
−
√
y − p0
Tz

+
ẏ

2
√
y − p0

)
u

]
.

(22)

We use the previously described approach to control law
synthesize. We need to find such a controller that trans-
forms the closed loop system into a linear one, its polyno-
mial will look similar to equation (12):

ÿ(t) = −Kc

T
[r1ε̇(t) + r0ε(t)], (23)

where ε(t) = y∗ − y(t).

The desired control law can be derived from the following
equation
√
y − p0
Tz

uc +

(
−
√
y − p0
Tz

+
ẏ

2
√
y − p0

)
u = r1ε̇+ r0ε.

Finally, one gets the control law:

uc = u− Tz ẏ

2(y − p0)
+

Tz√
y − p0

(r1ε̇+ r0ε). (24)

Substitution of (24) in (22) obviously leads to (23).

Let’s introduce variables

r̃1 = − T

Kc
r1, r̃0 = − T

Kc
r0 (25)

then the characteristic polynomial of the closed loop
system described by equations (21), (24) has the same
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form as (14). One can choose the controller parameters
r1 and r0 based on the same previously described rules.

We consider that drive dynamics parameter Tz is known
(from technical documentation or as a result of separate
experiment). If Tz is known, then the control law (24) can
be used to control the choke valve position, but as it follows
from (25) to compute controller parameters r̃1 and r̃0 one

needs to know the value of parameter α = −Kc

T
.

The estimate of α can be found using (18) again, but in this
case the control signal uc has the form (16), consequently
the actual choke valve position u will be described by the
following equation

u = u0 + ρs sinωt+ ρc cosωt,

where ρs, ρc depend on values of Tz, ρ and ω. Obviously,
the harmonic component used in (18) passes through the
choke valve drive, so estimate α̂ can be found using (18).

7.2 Example

Let’s perform simulation of system (21) with parameter
Tz = 5. Other parameters match those in (19). Let’s
assume parameter α is known for simplicity. Setpoint,
initial pressure and control limits are kept the same:

y∗ = 190, y(0) = 150, u, uc ∈ [0; 100].

Initial position of the choke valve is set at u(0) = 100, the
sampling period is h = 0.1.

The choke valve is controlled according to control law (24)
using the following controller parameters (25):

r̃1 = −27.85, r̃0 = −8.12,

or r1 = 0.8 and r0 = 0.15 respectively.

Fig. 5. Pressure in closed loop system with choke drive
dynamics taking into account

Numerical implementation of the proposed control algo-
rithm is complicated because it contains derivatives of
signals y(t) and ε(t). There are several methods to numer-
ically compute derivatives. In this example we use simple
Euler approximation:

ẏ(t) =
y(kh)− y[(k − 1)h]

h
ε̇(t) =

ε(kh)− ε[(k − 1)h]

h
.

The benefit of this method is that it provides stability of
the system for large enough values of the sampling periods
h.

The choke valve pressure transient during numerical sim-
ulation of the system (21) with controller (24) is shown in
the Fig. 5.

System (21) is more complex in comparison with equation
(9), therefore the value α may be estimated with poorer
accuracy. The proposed control law (24) is robust, because
it provides stability of the system (21) even in situations
when α is identified with large error. The Figures 6, 7 show
pressure transient for two sets of controller parameters
(25), when inaccurate estimate of the parameter α is
found. Let’s define true value α as αT , pressure transient
for α = 0.75αT is shown in the Fig. 6 and pressure
transient for α = 1.25αT is shown in the Fig. 7. These
Figures have no significant differences from the Fig. 3.

Fig. 6. Pressure in closed loop system with α = 0.75αT

Fig. 7. Pressure in closed loop system with α = 1.25αT

Numerical simulation of the system (21) closed with a
typical PI-controller was performed to compare its per-
formance against the proposed controller (24). The PI-
controller is described by the following equation:

uc = (1.5 +
0.05

s
)ε.

Its parameters were chosen manually.

The Fig. 8 shows pressure transient with this PI-controller.
One can observe significant overshoot and poor accuracy.
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Fig. 8. Pressure in closed loop system with typical PI-
regulator

8. CONCLUSIONS

Dynamic algorithm of finite-frequency identification is
used to identify the parameter of managed pressure drilling
process. The obtained estimate of the parameter is further
used to synthesize control law. The synthesis procedure
produces the controller, that compensates nonlinearity of
the control system. Numerical simulations showed effec-
tiveness of the proposed algorithms for parameter identi-
fication and controller synthesis.
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