TECHNICAL NOTES

FREQUENCY CHARACTERISTICS OF OPTIMAL CONTROL SYSTEMS

A. G. Aleksandrov UDC 62:3

Single control systems that are optimal in the sense of a.definite-positive quadratic functional
are considered. It is shown, in particular, that the stability phase margin at cutoff frequency is
not less than 60° and the 6scillatabillty index does not exceed two. The relation between the
coefficients of the optimized functional, on one hand, and the crossover gain of the optimal sys-
tem in the open state, on the other hand, is also determined.

1. Definitions and -Notation

We consider a control system in which the asymptotically stable perturbed motion is described by the equatf
/ e .
-‘fi=ZPuI:+b¢u (t=1,...,n), (11

J=1 4

n
u =.Z: Ci%y, (

faui

where x; (i = 1,..., n) are the phase coordinates of the controlled ftem, u are control coordinates, and Pijo by, 8
c; are numbers.

‘We assume that the item (1.1) is fully controlled, and the fully satisfied control law (1.2) fs such that fn ¢

solutions of (1.1) and (1.2) the functional <ae
] » " ‘.A
I= S Z q:j2125 + uz) dt’ z Q%25 > 0 for all x (1,
0 " f,jemi o - .

{s minimized for any given initial conditions.
The latter means [1] that the coefficients ci{i=1,...,n) of the control equation (1,2) satisfy the follow ,’
relations: . E

n .

Ddwba=c; (i=1,..., n), (1.4

Q=i

Z (Aatpaj +A¢jpcl)— cicj -+ gq5=10 (t, 1= i,.. .y n)' All = Allv (1.

where || Ay Iy is a definite-positive matrix.
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Equations (1.4) and (1.5) are optimal algebraic conditions. These equations are obtained as a result of synthe-
sis that is optimal in the sense of (1.3) of the control (1.2) on the basis of the Lyapunov-Bellman method [2].

The algebraic optimal criterion is obtained in a form somewhat different from (1.4) and (1.5 in [3].

In going over to the Laplace transforms, we write the transfer function of the open system (1.1) and (1,2) in the
form

w(s) = K(s) 1 Dp(s), (1.8
$—pu —P1s . =P 0
— P 88— P ... =Py, 0
N Dp(‘)= e 8 @ & 8 & ° & 9 0 o 0 0 0 ' (1.7)
~Ppy —Ppyg - 8 —Ppna0
[ Ce oo Cn 1
e—pun —pu . —Pyp h
—Pu $—pu.. —Pyy b
K@=].0ooo cveeeveeess |, (1.8
—~Pny —Pny o 85— Ppy by
a s .o Cn 0

Physically w(s) is the ratio u(s)/u(s), where u(s) is a certain force applied to the input of the item of the
open state control system.,

Expanding the determinant (1.8) in elements of the last row, and then in elements of the last column, we write
(1.8 in the form

res(s) :
w(s)= ch[ 2‘, b ] (1.9
"_‘ ot D (l) N

where ru( s) (i, j. ..., n) is an algebraic addition to the element of the f-th column and j-th row of determinant of

(1.8,
We introduce a certain function Hy (s):

Hy(s) = 2 hu[ 2 b,;"i:;] (110

(L2 Jumi

where hyx (4, k=1,..., n) are coefficients of linear forms that satisfy the condition

é ( é hrizs )( "2 huz:) - ”Z 9437425

Romi famg Jemi f,jmmti
We use the notation

w(j0)w(—j0) = 42(0), argw(jo)=(0), D) Hx(—jo)H\(o)= B (a). (1.1

Rt

Here A(w) and ¢ (w) are the amplitude and the phase frequency characteristics of the open state system.

In (1] the optimal control conditions (1.2) were obtained in frequency form. The necessary and sufficient con-
dition for the optimal condition (1.2) in the sense of functional (1.3) is the satisfaction of the equation

M+ w(—jo)lt+ w(e)] =1+ NH(—j0)Hr (o) (112)
hom{
for all real frequencies w.
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2. Frequency Characteristics of Optimal Systems Independent

of the Concrete Set of Parameters [qij] of the Optimization Functional

We write (1.12) with allowance for the notation of (1.11) in the form of the following equations equivalent
to (1.12):

w(—~jo) + w(jo) + u(—jo)»(jo) = B*(w), (2.1
24 () cos p(0) + A%(0) = B*(0). (2.1)

On the basis of (2.1) and (2.1') we obtain the following characteristics,
1. The phase margin of the optimal system (1.1) and (1.2) {s not less than 60° at the cutoff frequency (w).

The phase margin (¢*) at cutoff frequency, i.e., at the frequency for which the equality Alwg) =1 fs satis-
fied, is determined by the relation ¢* = 7 + ¢ (w,).

The notion of stability margin in the modulus and phase is introduced for those systems in which the real parts
of the roots of the equation Dp(s) = 0 are nonpositive; in addition, it is assumed that w, is unique [4, 5],

Taking into account the fact that B(w) =0, we obtain from (2.1°)
24 (w) cos () + 4%(0) >0, (2.2
from which we obtain atw = w,
€03 P(0c) > —05. (2.9
The latter means that ¢ (wc) satisfies one of the following relations:
a) 2nn < @(ac) < (28 + 1)x — 60°,
b) —(2n + 1)x+ 60° < @(wc) < —2nn,
c) (2r+ )7 +80° < @(we) < 2(n + 1),
d) —2(n 4 1)1 < p(wc) < —(2n + 1)1 — 60° w9

From the stability condition (¢(w¢) > ~7) for systems that are stable and neutral in the open state, it follows
that relation (2.4d) must be dropped, while (2.4b) takes the form:

—n+60° < g(o.) < 0. (2.5
On the basis of (2.2), (2.4a, b), and (2.5) we conclude that
9* = 60°.

2. The modulus margin of system (1,1) and (1.2) attains an infinitely high value if the automatic phase re-
sponse (APR) of this system is of the first crder, and is not less than two if the APR is of the second order.

The modulus margin (L) is determined [5] for static and astatic systems by the relation

: 1
L= min{A(m,); o) },
where w; and w, obey the equalities
Im w(jw;) =0, Re w(jo,) < —1, Imw{joz) =0, Re w({jo) > —1
(for APR of the first order, the frequency w, does not exist), .
We obtain from (1,12) for all w =& that satisfy the equation Im w(jw) =0
2Re w (@) + [Re w (j®) ] = B*(«),
or
Re w(10) = —1 = VI + B*(a),

from which it follows directly that APR—w(jw) does not intersect the interval (~2.0) of the real axis of the complex
plane w, and this in turn proves the statement above.

1528




3. The oscillatability index of the system (1.1) and (1.2) does not exceed 2.
The value of the oscillatability index M is determined [5] by the relation

d
M= max mod w (jw)

—_— (2.8
t<ocw mod [1 + w(jo)]

On the basis of (2.1) we can write
mod v (jo) = A(0) = —cos () + Ycos® ¢() + B (@) (2.7

f (the minus sign in front of the radical fs dropped because A(w) = 0),
i It follows from (1.12) that
mod [{ + w(jo)] = Y{+ B (o). (2.8
Thus
modw(o) - —cosg(0)+ Yeos' p(w)+ B(w)

M = max = max
o< MOA[1+ w(JO)]  oxeso Y1 + B*(w)

—_— S (2.9
— cos ¢(0) + Yeos* ¢ (0) + B (w) _ max LTV B@

o< cospmst Y1+ B (e) << Y1+ B(w)

1< B 0)S o

<

Relation Between Coefficients of the Optimized Functional, the Gain,

nd the Cutoff Frequency of the Open State System

Among the natural requirements of control systems, there are the requirements concerning the values of the
ain and cutd't?'frequency of the open state system. These tum out to be additional limitations on the choice of the
orm of (1.2), which, in addition, must together with (1.1) yield a minimum of functional (1.3), The coefficients
f functional (1.3) are usually known to an accuracy up to certain coefficients, whose arbitrary choice may be used
satisfy in the system (1.1), (1.2) the given additional limitations. In connectlon with this, it is interesting to es-
blish in clear form the relations between the coefficients of functional (1.3), on one hand, and the gain and cut-
 off frequency of the open system, on the other hand.

We introduce a certain frequency wo* determined from the equality

B (o) =1, (3.0
Fand we show that
mc'
mod Ig — < 0.4 (3.2
o~

~ Indeed, it follows from (2.7) thatat w = w.*

3 A(0)=—cos @ (0) + ¥ cos ¢ (07) 1 1. (3.9
After taking into account the inequality 0 = cos¢ (w) =<1 it follows from (3.3) that
04< A )< 24 or modZOlgA(o):v)sBdB. (3.9

Assuming the slope of the linear automatic frequency response in the vicinity of w . to be not less than 20
B/decade, weé obtain (3.2) on the basis of (3.4),

Thus, if the coefficients qj are chosen such that the equality
Bia; )=1 (3.5)

tisfied, then the cutoff frequency of the open system (1.1) and (1.2) differs from w.* by no more than 0.4 de-
es (by a factor of 2.9).
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The gain of the static open state systems, K, (the transfer coefficient), is determined by the equation

Ky = A4(0) = w(0). (3.0

At w = 0 the identity (1,12) has the form
[t+ 2O+ wO)] =1+ B (0). (3. §

Romi oA

Usually K, > 1, so that it follows from (3.7) that ;
Kp = BY(0). (3.9 4
In systemns with astatism of r-th order, th is determined [5] from the value of the free term of the numerator

of the transfer function of the open system of the form

) -~
w(s)= Kp(i+¢ﬂ+.‘ + a3 ) (t<m+r; r—=i,...,v), (3.9) ;
sO(1+dis + ...+ dnsim)

Introducing the notation

) ks [ Zb,r,,(s)] = Ly (s), (3,10)

fexq fmmy
we write down (1.12), with account taken of (1.6), (1.8), and (3.10), in the form

D) La(e)La (—s)

K(s) E(-7_, = (
{ 1 =1 y ; 3.11)
[’ + Dy(s) ][ + Dy (—s) ] + Dy (8)Dy (—s)

From this it follows that

s () + K(@)1(Dp(~s)+ K(—s)] = Dy (5)Dp(—s)+ R La ()L (—s). (3.12

humy
We note that Eq. (3.12) is obtained formally from (3.11), since no account is taken of the characteristics of

polynomial Dy (s), which at certain s = jw may vanish; however, the validity of (3,12) for all w may be proved if
(3.12) is obtallzled directly from Euler's equations for the extremals of solutions (1.1-1.3,
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Assuming that in the control system with astatism the degree of astatism is determined by the controlled item,
we can write

Dy(s) == s (do + dis + ...+ dms™) = s"Dp(s)do. (3.19
Substiuting (3.13) into (3.12) and dividing each side of equality (3.12) by d,, we obtain ats; = jw =0
n
N £3(0)
2 Roami
Kl (3.14)

d3
0

Thus, if upon substitution of the solution of the synthesis, the values of the transfer coefficient Ky* and cutoff
frequency @, are specified along with functional (1.3), then the coefficients qn (4,j=1,..., n) must satisfy the
conditions

Dp(o) S' { Zh“[ zb,r,,(()) ]} K (3.15a)

=1

for static systems,

T}:‘ i‘, { éh,,[ Z.b,r,,(o) ]}'= o (3.15D

0 Rwei  imet Jumi

for astatic systems

:5:".:{ é}‘hu[ ébm—fﬁe) H é helbir oo } =1, (3.16)

and systen"$1.1) and (1.2), optimal in the sense of functional (1.3), after satisfying these conditions has Kp and w,
near (to an accuracy determined above) to those specified.

We note that conditions (3.15) and (3.16) may turn out to be incompatible.
4, Example
Let us examine the gyro housing described by equations [6]
B =23, 2= PpaZs+ pasts, E3= P32z + psszs+ bsi. (4.1
It is necessary to determine the control equation
b = ¢yZs + c223 + CaZs (4.2
or, which is the same, the transfer function of the regulator
u = F(s)z, (4,27

so that, along the solutions (4.1) and (4.2) the functional of the form

I= (4111’1 + qzzz: + qaaz: + u?)dt, (4.9

ot g

{s minimized, and in addition, system (4.1) and (4.2) should have Kp and “;c near certain given values Kp' and “-'c'

We shall assume that in the functional (4.3) the coefficient qgq is specified. We determine dyy and gy, from
the given values Kj and w,.

In the case under study
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A o=gu My=gn, A,=gm,

s —1 0
Dy(e)=|0 s—pss prs |=5[s*— (P2 + Pws) 2 + PrsPms — pmepul,
0 —pse s—pm
Tis == R4sP23, Tas == —h328Pp2s, rss = hsss(s —pn).

Conditions (3,15b) and (3.16) are of the form

2 b2
__IPn’s g (4.4)
(PrePas — Pe2Pis) 1
qupib + magpzabg + gm0} (5", + p,) b} \
@} {wd + (%, + P3 + 2PusPw) O} + (PrPss — Pupul}

(4,5)

The following gyro housing parameters [6] and the following optimization functional were chosen as a numeri-
cal example:

Paa=—300, pas=10°, pgr=—3, pyy= —1, bs= 10-?,

K .
gss = 5100, K} = 4.10? (x, ~ E%%ﬂ’), (4.6

we = 100 — 200 sec-!,
At u3c = 100 {t follows from (4,4) and (4.5) that
qu1 = 1.6-10'2, gg» = 3-10%, (4.7

At numericalvalues of (4.6) and (4.7) of the gyro housing parameters and of the optimization functional, the
problem of optimizing functional (4.3) was solved by the Lyapunov-Bellman method, and the coefficients ¢ (1 = 1,
2, 3 of the optimal regulator were obtained: ¢; = —0.126°10’, c; = —0.44°10%, and cy = -116°10°,

Using the first and second equation of system (4.1), it is easy to obtain the transfer function of the ofittfnal
regulator: :

[

u = ¢z + (Cz —¢s e )a’-: + -—'fa == — (0.128-107(0,92-10-%s* + 3.1-10-%s 4 1) z,.
D23 P23

The transfer function of the open state gyro housing is of the form

Pas
b — Oy 2
P [c‘ +(°’ " Pu) e ]  0426-107(092-10~44+ 3.4-10-% +1)

T [s2 — (22 -+ Pas}s + P22pss— P2spss) o £(s® -+ 301s - 3.3.10%)

w(s)

Figure 1 shows the automatic frequency response plots in the open and closed states.
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