DETERMINISTIC SYSTEMS

METHOD OF FREQUENCY PARAMETERS

A. G. Aleksandrov uDC 517.977

A new method of analytic design of controllers is proposed for plants specified
by finitely many values of their frequency responses.

1. Introduction

The method of logarithmic amplitude-frequency characteristics (the LAFC method) is wide-
ly used in controller design practice. This grapho-analytic method makes it possible to
visualize the connection of the controller parameters with the accuracy and the performance
of the system which is being designed [1].

For using the LAFC method, we need the amplitude-frequency characteristic of the plant
(and in the case of nonminimum-phase plants also the phase-frequency characteristic PFC),
which in general is assigned in the entire frequency interval from zero to infinity.

To experimentally determine the frequency response in the entire frequency interval is
difficult. Therefore it is common to find by experiment the values of the AFC and the PFC
for n frequencies (n being the order of the highest derivative of the plant), on the basis
of which we can determine (identify) the parameters of the plant transfer function, and then
construct the AFC and the PFC for all the frequencies; on the basis of the latter we can find
the controller parameters.

Therefore it is necessary to elaborate a direct (nonidentification) method of design
that uses the results of experiments with n frequencies without identifying the plant param-
eters and constructing the AFC and the PFC.

Below we describe such a method for continuous and discrete systems. It is based on a
frequency interpretation of modal control.

2. Statement of Problem

Let us consider a plant whose disturbed motion is described in the first approximation
by the equation

y(")+dn—1y(n“”+ .o +d1y+doy=
—kw'+ ... ikt maf @+ . Fmyftmaf, (1)

where y(t), u(t) ,and £(t) denote the measured variable, the control, and an external dis-
turbance, with ytl), u(J), and £(2) (i=0,n; =0, y; =0, a3 Y <n; a <n) being the
corresponding derivatives.

By effecting a Laplace transform of (1) with zero initial conditions and by setting
f(t) = 0 for the time being, we obtain

y(s)=wo(s)u(s), (2)
where
wo(s)=k(s)/d(s), s=Atjo (3)

is the transfer function of the plant (1) with respect to the control. The polynomials oc-
curring in (3) are

k(s)= D kst ds)= Y di'  (da=1). (4)
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Let us introduce (for the time being, formally) the frequency parameters
av=Re wi(A+j), By=Im we (A+jw,) (k=1 n), (5

where A, wy (k = 1, n) are assigned numbers.

For A = 0 they represent the real and the imaginary frequency responses of the plant.
There exists a well-known method [2] of experimental determination of these characteristics,
Thus, if the plant is asymptotically stable, then by exciting its input by a harmonic signal
u(t) = lsinwgt, we obtain at the output

Y (2)=Re wy(j,)sin oxt+Im w, (j@,) cos wut.

By applying y(t) to a Fourier filter, we obtain the parameters ag and By (k = 1, n).
Let us describe an experimental method of determination of these parameters for an unstable
plant for which we have a bound Co 2 0 for the largest real part of the roots si (i =1, n)
of the polynomial d(s):

¢,>> max Res,. (6)
iCign

Assertion 1. For f = 0 let us apply to the input of the plant (1) a signal

u(t)=e* sin w,t, A=c,. (7)

Then the output signal modulated by the exponential function e~At

g(t)=y(t)e™, (8)
will have the property

‘lim §(2) =Re ws (A+jr) sin @yt+Im w, (A+jw,) cos . (9)

This assertion is proved in the Appendix.
By virtue of this property we obtain with the aid of a Fourier filter the parapgters
ay and Bj. .

Definition 1. The frequency parameters of the plant (1) are defined by a collection of
2n numbers which are the coefficients of harmonic and steady-state responses (9) to a signal

(.

In going over to the formulation of the problem, we shall assume that the parameters d;
and ks (1 =0, n—1; j =0, y) of Eq. (1) are unknown. We know that the plant (1) is com-
pletely controllable and that the roots of the polynomial k(s) have negative real parts; the

—

number c, is assigned, as well as the bounds m;*(i = 0, o)
[md<m: (i=0, a) (10)

and the frequency parameters ag and By (k = 1, n). As £f(t) we shall take typical [1] step
or harmonic disturbances that satisfy the condition

() |<r, (11)

where f* is an assigned number.

Problem 1. For a plant (1) specified by the frequency parameters ok and By (k = 1, n),
find parameters of the controller

-4 tgatgu=r,_ y»-04 . +rig+ry, (12)

such that the steady-state error Ystd = limy(t) in system (1), (12)under the action of typi-
t>oo
cal disturbances satisfies the condition
ly:;i:‘d I< ‘std? . (13)
where ygrq* is an assigned number.
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This problem differs from the problem studied in [3] only by a possible instability of
the plant. The latter does not permit the use of the method (proposed in [3]) of optimal
control on the basis of frequency parameters, since it is based on an optimality condition
in frequency form which is constructed on the assumption of asymptotic stability of the plant.
Moreover, the extension of this method to the case of discrete plants and plants with delay
encounters insurmountable difficulties caused by the specific form of the condition of opti-
mality of discrete systems [4].

Below we propose a method that solves Problem 1 and that can be extended in a natural
manner to the case of discrete plants and plants with delay in the control.

3. Modal Control Based on Frequency Parameters

At first we shall assume that the parameters d; and kj (i=0,n—-1; j =0, y) of the
plant (1) are known and that it is required to find parameters of the controller (12) such
that the characteristic polynomial of system (1), (12), i.e.,

D(s)=d(s)g(s)—k(s)r(s), (14)
where g(s) = gn_;s0"! + ... + g;s + go, r(s) = ry-;s""* + ... + r;s + r,, coincides with the
assigned polynomial

8(s) =148, =24 +8,5+80. (15)

It is well known that this modal control problem can be solved as follows.

Let us construct the equation

d(s)g(s)—k(s)r(s)=06(s) (16)

and by comparing in it the coefficients of equal powers of s, we obtain a system of linear
algebraic equations for the parameters gi and ry (i=0,n=-1; j =0, n—-1) of the con-
troller (12):

» 1
Z diga—i— Z kira—1=8e (@=0,2rn—1),. (17)

im0 a0

where gy-; =0, for a —i < 0Oand a — i >n — 1; Toq-g =0, fora— ¢ <0and a— 2 >n— 1.
A solution of system (17) exists and it is unique by virtue of the fulfillment of the
condition [5]
degree of r(s) < degree of a(s)v™i(s). (18)

Here v(s) is the greatest common divisor of the polynomials d(s) and k(s). The poly-
nomial v(s) = 1 by virtue of the complete controllability of the plant (1).

In going over to the case of unknown plant parameters, let us assign a polynomial struc-
ture

8(s)=k(s)¥(s), (19)
where
Y (8) =5" 11t g a8 T3 L st (20)
Below we shall assume that all the roots of y(s) have negative real parts.

Let us substitute (19) into (16) and divide the result by d(s). By setting s = A + juw,
we then obtain a modal frequency equation

g(Atjo)—r(Atje)w.(Atjo) =¢p(At+jo)w. (A t+je). (21)

By equating w = wg (k = 1, n) in (21), we obtain a system of equations

L T} nei

Z gi(Atjan) —wo(Atjw,) Z ri(Atjw,) ‘=

om0
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n-g=1
=w, (Atjor) 2 YA+’ (k=1,n). (22)

i=0

Let us transform this system taking into account that the sought controller parameters
are real. Let us write

(A tjo)'=p:(0)+im(w) (i=0, 2n—Y), (23)

where

fi/2} [4/2}

P ((D) =Z §a'0®, 151 (‘D) = 2 6;v+1(ﬂzv“ (i=0, 2n—1) ,

yam0 Va0

[i/2] being the integer part of the number i/2, and kpy4; = 0 for 2v + 1 > i. The coeffi-
cients of these polynomials are functions of A, i.e.,

(24)

Bun'=A 2 (—1)ES,  Bava=A " (—1) Eivier

where gzv(l) and 52v+1(2) (v = 0, [i/2]) are known numbers. By substituting (23) and (5)
into (22), we obtain a system of 2n linear equations for the 2n parameters of the controller:

Y oo g X Lanpilon) —Buste(wn) Iri=
2n—1~1 (25)

= Z [akpi(mk)—ﬁhlfi(mu)]ﬂ?f (k=Tv_n),

0

n—1 n-1

Y @) g Y Tanss(n) +hapelon) Irim

iax0 i=0
2n—7—1

= Z [anpi (@) +Bapi (@) 19 (k=1, 7).

=0

et ( 26 )

Assertion 2. If the plant (1) is completely controllable and its characteristic poly-
nomial
d(s,,) #*0 for Sk=h+j0)h (k=1., n), (27)
then a solution of system (25)-(26) a) exists, b) is unique, and c) coincides with the solu-
tion of system (17).

This assertion is proved in the Appendix.

The equations (25)-(26) constitute a direct method of design of modal control on the
basis of frequency parameters. It is true, though, that the modal control problem solved by
this method is somewhat specific, i.e., the polynomial (15) is not just any polynomial, but
it has the structure (19).

Together with this we can obviously have also an identification method of modal control
based on the frequency parameters. It involves identifying the coefficients of Eq. (1) on
the basis of frequency parameters and solving the equations (17) of modal control. These
operations require the solving of 2n identification equations, as well as 2n equations (17)
for the controller parameters. The direct method requires the solving of only 2n equations
(25)-(26) which express the sought controller parameters directly in terms of the frequency
parameters, circumventing the identification operation. '

4. Method of Frequency Parameters

In proceeding to the solution of Problem 1, let us establish a connection between the
input variable y(t) and the disturbance in a system (1), (12) whose controller parameters
are specified on the basis of (25)-(26). By virtue of (16) and (19) we obtain from (1), (12)
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the expression

m(s)g(s) _ m(s)g(s)
YO = s k@@ | T v 1

(28)

where m(s) = mys® + ... + mys + m, is the disturbance polynomial in (1).

In the general case the polynomial g(s) is not explicitly depending on ¥(s), and there-
fore it is difficult to find a method of determination of the polynomial y(s) such that the
accuracy requirements (13) are satisfied.

In this connection let us note that there exists a structure of the polynomial ¥(s)
such that g(s) does not depend on y(s). Such a structure, denoted by ¥(s), has the form

P(s)=s"+tPn_ss"'+ ... +Pis+o. (29)
Indeed, a solution of the equation
d(s)g(s)—k(s)r(s)=k(s)H(s) (30)
is given by the polynomials
g(s)=k(s), r(s)=d(s)—(s). (31)

By virtue of (31) we shall write the constraint (28) in the form

m(s)
y(s) ~%06) f(s). (32)

By using the bounds (10) of the parameters of the polynomial m(s) and the expressions
f(s) for step or harmonic external disturbances, it is easy to find parameters of the poly-
nomial (29) such that the accuracy requirement (13) of system (1), (12) is satisfied. Thus,
in the case of a step signal we have

.

ystds—';%f'. (33)

Here let us note that the solution (31) corresponds to an unrealizable controller if
the degree y of the polynomial k(s) in Eq. (1) is smaller than n — 1. Instead of (30) let
us therefore consider an equation

d(s)g(s)—k(s)r(s)=k(s)x(s)B(s) , (34)
where
%(8) =%n—1-8" T . . . +x,5+%,. (35)
By assigning the structure of the polynomial
g()=p(s)k(s), (36)
where p(s) = Pn-y-18""Y"1 + ... + p;s + p,, and by substituting it into (34), we obtain
d(s)p(s)-—-r(s)=u(s)$(s). (37)
Let us write
”(S)=(T3+1)n_r'_‘. (38)

Assertion 3. There always exists a sufficiently small number t such that (37) is satis-
fied by the polynomials

P (8)=x(s)+0"(s), r(s)=d(s)—P(s) +0"(s), (39)

where OX(s), OY(s) are polynomials of degree n — y — 1 and n — 1 whose parameters can be
made as small as desired by selecting a sufficiently small number <.

This assertion is proved in the Appendix.
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For specifying the number t, let us proceed as follows. Let us write

$(s)=(st+s")", (40)

where s* is an assigned positive number, and assume below that
T<i/s* (41)
Usually a controller increases the speed of response of a system, and therefore we often
have
$°>si (i=17—’_5; (42)
where the s;j are roots of the polynomial d(s).

By using the formulas (A.19)-(A.23) of the Appendix, it is easy to show that under the
conditions (41)-(42) the parameters of the polynomials 0%(s), 0Y(s) are sufficiently small.
Thus, the frequency parameter method which solves Problem 1 involves the following operations.

1. To find the number s* on the basis of the accuracy requirement (13). Thus, in the
case of an external step signal we obtain by virtue of (33) the expression

* /n
o= (2 )" (43)
Yseq
2. To construct the polynomial
Y(s)= (Ts 1)1 (st+5%), T<<1/s". (44)

3. To solve the equations (25)-(26).

5. Control of Discrete Plants

Let us consider a discrete plant with delayed control

y(iT)+dy [(i—1)T1+. .. +duy[ (i-n)T] = et
=ku{(i—x—Y)T1+... k[ (i—-n—x)T]+ (45)
+maf{(i—a)T]+ ... +mof[(i~n)T] (i=0,1,...),

where T is the discreteness interval, and kT the control delay.

By using the z-transform [6], we obtain for zero initial conditions the transfer func-
tion of the plant (45) with respect to the control:

wo(27*) =k(z~*) [d(z-1), g=g+iorT (46)

where

- n
k(3t) mg=x+ 2 k=0 d(z1) =1+ 2 diz~

{ey famy

The plant frequency parameters

ah=Re wo(e—(l&iuk)")’ ﬂh=lm wo(e—(h-f-imx)l') (k=1’ N) (47)

can be determined experimentally by applying to the input of the plant (45) a signal
u(il)=e""sin a,T (i=0, 14,...), . (48)

and by letting the output signal modulated by an exponential function e AiT pass through a
discrete Fourier filter. The number A can be determined from the inequality

(49)
e>2,> max |z,|.
I<icn

Here z, is a bound of the absolute values of the roots z; of the polynomial d(z-1).
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Suppose that it is required to find a controller

g(z7 ) u=r(z7")y, (50)

{0

n v
where g(z-‘)=2g‘z-', r(z-‘)=2r{z—‘, that solves Problem 1 for the plant (45).
Pery

Similarly to (16) and (19) we shall then write the modal equation and the objective
polynomial

d(z~)g () =k () r(z=) =k (=) (=), (51)

where

¢
P(z~') =1+ ZW:Z“, E=2n—x. (52)

fmmi

As before, we shall assume that the plant is completely controllable and that the roots
zi"' (i =1, y + k) of the polynomial k(z™!) do not exceed unity in absolute value.

By virtue of (46), we obtain from (51)-(52) the modal frequency equation
g (e—(}.+je)r) —w, (e—(;.w‘u)r) =w, (e—(A-Ho)T) ¥ (e—(uju)r) . (53)

By setting w = wg (k = 1, n) in (53), we obtain a system of linear equations for the
parameters of the controller (50). For satisfying the accuracy requirement (13), we shall
take £ = n in (52). Then (51) will have a solution

8(z7") =k(z7'), r(z*)=d(z"!) -9 (z™"), (54)
such that
_m@ (55)
y(z) myp=— f(2).

Hence we obtain the values of the parameters of the polynomial y(z~1!).

6. Multidimensional Plants

Let us consider a multidimensional plant described by Eq. (1), in which y(t) and u(t)
are m-dimensional vectors, and dj and ks (i =0, n— 1; j = 0, v) are (m x m)-dimensional

number matrices, whereas the m; (i = U, o) are m-dimensional vectors.
The plant transfer matrix is
wo(s) =d-*(s) k(s), s=A+jo, (56)
where d(s) and k(s) are matrix polynomials of degree n and y, respectively, d(s)d~1(s) =
En (B being a unit matrix of dimension m x m).

The frequency parameters form the matrices ap and Bk of frequency parameters. The ele-
ments ap?V and BR1V (i, v = 1, m; k = 1, m) of these matrices can be obtained experimentally
as follows: By applying to the v-th input of the plant a signal uV(t) = eAtsinumt and by
letting the i-th plant output signal modulated by an exponential function e*t pass through
a Fourier filter, we obtain the numbers oxiV and ByiV. The exponent A is a bound of the
largest real part of the roots of the polynomial detd(s).

Suppose that it is required to find matrices of a controller of type (12) such that the
accuracy requirement (13) holds with respect to the multidimensional output y.

Let us construct an equation

d(s)—k(s)g™" (s)r(s)=k(s)g~*(s)%(s), (57)

which after multiplication by g(s) coincides with (16) in the one-dimensional case (m = 1).
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It is easy to show that if (57) holds, then the vectors y and m(s)f are connected by
the following relation similar to (28):
¥ () =45 (8) K= () m (5) (s) . (58)

By multiplying (57) at first from the left by g(s)k™*(s), and then from the right by
d~1(s)k(s), we obtain a matrix frequency modal equation of type (21). By setting w = wyg
(k = 1, n) in it, we obtain a system of 2nm linear algebraic equations for 2Znm controller
matrix elements.

For meeting the accuracy requirements of the system which is being designed, we shall
assume that the degree of the matrix polynomial y(s) is equal to n. Then (57) will have an
obvious solution

g(s)=k(s), r(s)=d(s)—¥(s), (59)
such that (58) takes the form

y(s)=p~'(s)m(s)f(s).

With the aid of this relation we can determine the matrices of the polynomial ¥(s) on
the basis of the accuracy requirements.

7. _Example
Let us consider a completely controllable minimum-phase plant

jt+dyg+diy=kait+kutf (60)

with unknown parameters d,, do, k;, and ky,. We know the frequency parameters of the plant
(60)

a,=0.85, p,=—1.4, a,=0.22, p,=—0.88, (61)
obtained experimentally for
A=6, @, =31/ sec, @,=6-1/sec. T (62)
The external disturbance f(t) is a step function
0 for t<t,
t)= <f, 63
10=17 oo op, VI (63)
where f* = 10.
It is required to find a controller
gitgaa=ryg+ry, (64)
such that the steady-state error in the system (60), (64) is
[Yql <0.204. (65)

In accordance with (43) we obtain s* = 7. Since in the case under consideration we
have n = 2 and y = 1, let us find a polynomial (44) of the form ¥(s) = s? + l4s + 49, and
hence, :

Pi=14, $=49. (66)
By virtue of the obvious relations

p‘?(m) =1v l-‘:o((l)) =Ov pl(m) =A‘1 }h((ﬂ) =,
p2(0) =A—0%, pa(0) =210

we can write the equations (25)-(26) in the form

ot Agi—anro— (h—Prwn) ri=
=a,,1po+ (a,,.k—B,m;.) \p;"‘ [a,(k’—m,’) —251;)»0)1;] N (67 )
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Agi—Baro— (au(ﬂu"‘ﬁux) ri=Bupo+ (oot ﬁhz') bt (68)
FHow2hou By (A2—ax?) 1 (k=1, 2).

By substituting the parameters (61), (62), and (66) into (67)-(68) and by solving this
system of four linear algebraic equations, we obtain the coefficients of (64):

£:=5, gs=30, r,=—65, r,——14. (69)

Appendix
Proof of Assertion 1. Let us reduce (1) to Cauchy form:

i=Pz+bu, (A.1)
y=lz, (A.2)

where x(t) is an n-dimensional vector, P is a number matrix of dimension n x n, and b and %
are n-dimensional vectors.

Let us find the response of (A.1l) to a signal (7):

e(Min)t_g(A—ju)t ett—gtt
u(t)=e* sin 0t = =
2 2

For this purpose we shall consider the equation
zt=Pzt 4 best, (A.3)
Its solution is

t t

z+(t)= je"(“”be" dy=ePt j e(Es—P)thdr=B(s) e**—eP*B(s), (A.4)

to to
where B(s) = (Es — P)"'b, t, = O.
By replacing s by s in (A.4), we obtain a solution of the equation
£~ =Pz~ 4 best.

By virtue of (A.2) we then write

T B ele-lp@eiotet  UemIp(e) —p(@)]
2 2 2 |

Since 2'g(s) = wyo(s), we obtain

y=l'z=

¥ (t)=[Re wo(s)sin wt+Im wo(s)cos ot]er-1'eP! Im B(s). (A.5)
By constructing y(t) = y(t)e At and by noting that the definition of the number A yields

lim I"e(~Er+P)t=(), (A.6)

i—>o00

we obtain (9).

Proof of Assertion 2. For this proof let us show that the equations (25) and (26) coin-
cide under the condition (27) with the equations (17) whose solution exists and is unique
for a completely controllable plant.

By multiplying (26) by j and by adding the product to (25), we obtain (22). After mul-
tiplying the latter by d(sg) (k = I, n), we obtain a system

d(sn)g(su)—k (1)1 (sn)=8(n) (k=T m), (A.7)

which can be easily written as
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2n—1
Z - (W on) *xa=0, (A.8)
Q=0
where
n 1
vom ¥ digai= Y, Firai—ba  (a=0,20-1). (A.9)
i=0 b ]
If the solution of (A.8) is
)_‘ar_-'o (a=0, 2n—1), (A. 10)

then (17) follows from (A.9).
In proceeding to the proof of (A.10), let us at first consider the case A = 0.

Since kg (o =0, 2n — 1) is real, it follows that in this case (A.8) can be expressed

by
n—1 n—1i
im0 imal)
or in matrix form
.MX—_—O, (A-ll')
where
1 0 —o} 0 o} 0 - T
: Gaget
0 —02 0 ei.. O n
— —1 .
M=l 0 o 0 —a® 0.. g o=yt | *=| (A.12)
-~ -1
0 o, 0 —of 0.. 0 off -1  Kgn g |

It follows from the structure of (A.12) that the determinant of M can be easily repre-
sented (by a permutation of columns) in the form

0
det M=det[ w(; ]=det w;-det wa 70, (A.13)
w:

since w, and w, are (n x n)-dimensional matrices whose determinants are of Vandermonde type
[7], and

det w70, detw,%0, for we*eg (a¥p). (A.14)

Thus we have proved (A.10) for A = 0. For A # 0 the equations (A.8) take by virtue of
(24) the form

2n~1  [a/2] 2n—1  [a/2)

2 ( Z‘ Gzt“mnz‘) %q=0, Z ( Z 1'520:“(9:"“) %a=0 (k=1,n)
1=0

(-2 10 {m=0 a=0

or the matrix form

Mx=0, (A.15)




where

n—2 =
1, & A—o? B48ei+... ;gy-laﬁi + @2 (=)™l
k)
n—2g
1, A M—al, B8elt..., Z BT 0¥ 4 o B(—q)nl (A.16)
_ =0
M= n—2
0, oy Aoy, o+ wl..., ! Bt edtlg @1yt
=0
n—2
0, o, Ao, & +ol..., 121y 20 (—qyn-1
— 1=0 -
Let us show that
det M=det M, (A.17)

For this purpose let us effect a transformation of the matrix M that does not change
its determinant. We multiply the second column of M by A and subtract it from the third
column; then we multiply the first column of M by A and subtract it from the second column.
Thus, the first three columns of M will coincide with the corresponding columns of the ma-
trix M. Such a transformed matrix M will be denoted by M(1), Let us multiply the first
column of M'*) by §,2, the second by §,3, and the third by §,3; by subtracting them from the
fourth column, we obtain the fourth column of the matrix M. By continuing this process, we
obtain (A.17) and thus also (A.10); hence we have proved Assertion 2.

Proof of Assertion 3. For simplicity we shall confine ourselves to the case n — Yy —
1 =2. Then (37) will take the form

d(s) (pas®+pus+po) —T(s) = (v + 218+ 1) o). (A.18)
By comparing the coefficients of equal powers of s, we obtain equations for the param-
eters of the polynomials p(s) and r(s):
20— =0=0%,
s"lip 2y — $n_1‘r’— d, ,p2= 0%,
s ipp—1 =V, 2T+ $ P —d,_ o — d, .02 =0},
s~ Tp-1 T GpyPo— $ﬂ—l =d, o —d, et ?pn—zzt + TIJ"_a“’ = 0;—1'
31 —ry + dapo— Ya = dyp; — doPs + P27 4+ Port = oL,
81— 81+ dypo— By = dop; + V27 = O,
5% — ro+ dopo—Po =0 = or.
From the equations for the coefficients of snt2, gntl and sh it follows that

P2=7%, py=2v+0*(v?), pPo=110*(1), (A.19)

where 1im0,%(t2)/t = 0, 1im0,%(t) = 0.

00 >0
From the equations for the coefficients of sh~!, ...y 82, s, s° we similarly obtain
Tamt=Pn—t=dn-1+0n_s, (A.20)

where

Oy =Fp g+ ¥ 20— d, B — 4, 204 0F (9] —d,_ 0% (), (A.21)

ry="Ps —ds + O,
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07 =For2 + 9121 dov2—dy [21+0,* (1) ] —ds05(t), ri=%p1—di+O0y" (A.22)

04" =021—do[21+0,%(12) |- d105* (1), To="Po—do+ 00", Oo"=ds0y*(x). (A.23)

These relations yield

lim 0;"(tv)=0 (i=0,n-1),

>0

and thus we have proved the assertion.
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LOCAL DATA PROCESSING ALGORITHMS IN LINEAR SYSTEMS

A. T. Barabanov and B. A. Skorokhod UDC %17.977.5

The state of a linear system is determined on the basis of measurements of
the output in a given finite interval. By analyzing the possible use of
linear observers for this purpose, it was found that the observer gains de-
pend on the time, and they have pole-type singularities at the initial or
final point of the interval. Therefore two types of observers are consid-
ered, and the properties of observers with strong data processing in a neigh-
borhood of the initial instant of measurement are studied.

1. Statement of Problem

Let us consider a linear system
x=A4 (t)x, y=c(2)x, x() =0 (1)
and it is required to determine a vector x(tg) on the basis of a function y = y(t) measured
at t € I = [ty, tg]. Here x€ RD, y € R, A(t) is an (n x n)-matrix, and c(t) a (1 x n)-

matrix. One of the possible solutions of this problem is well known (see, for example, [1]),
and it can be written as follows:

y
x(t,) =M~ (ta 1) § ©7 (0,07 (0)y (6)d. @)
1
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