FINITE-FREQUENCY CRITERIA FOR STABILITY OF SYSTEMS
WITH UNDETERMINED PARAMETERS

DETERMINISTIC SYSTEMS
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1. Introduction
= __ihtroduction

e

use of experimental data is of great interest. The criterion of Nyquist (1, 2] lies at the
foundation of such analysis. Its use presupposes a knowledge of the obtained experimental
frequency response of the open system, in general, on the entire range of frequencies from
zero to infinity. In addition, it is necessary to have information concerning the number
of poles of the transfer function of the oren system which have positive real part. It is !
possible to reduce the number of experiments if one determines (identifies) the Parameters %
of the transfer function of the open system on the basis of trials for a

of frequencies, and then calculates the frequency response for frequencies @ e [0

~ L 2

range of frequencies.

In what follows, we obtain two such criteria for the case where the controiler param- ;
eters are known and the plant is given by a finite number of points of its frequency response. }
These criteria are based on the construction of certain optimizatio

2. Statement of the Problem
We consider two kinds of models of control systems.

First kind consists of mopdels described by the equations
i-Pz+bu, Z(to) =z, (1)
u=c”z, (2)

where x(t) is an n-dimensional vector of state variables of the plant (1) which are directly
measurable, u(t) is the control (the result of the controller (2)), c* is an n-dimensional
numerical vector (the Prime denotes transposition); the numbers (parameters) making up the
matrix P and the n-dimensinal vector b are unknown.

We will suppose that the plant (1) is completely controllable and observable with re- .
spect to the signal u. This means that 1

detlfb, P, .., P-b|%0, detfic", Pe, . . ., P17l , (3)

We suppose that t?e plant (1) is asymptotically stable, or if it 'is unstable, that the ?
n-dimensional vector c(?) of the controller I3

u=c®’g, ' (4) |

is known so that the system (1), (4) is asymptotically stable. This property of the plant :
allows us to obtain experimentally its amplitude-frequency characteristic aj(w) and its phase-§
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frequency characteristic o¢i(®) ,(iai,_;) » which determine the steady-state movements by the

outputs of the plant z((t)=a;(m)sin[cdt+q>¢(co)] (i=1_,_r;) when u = sin wt is applied to its input.
Using these characteristics, we formulate the frequency response (vector) B(jw) of the plant

vith components fi(0)=a:(w)e™® (i=1, n). It is related to the parameters of the plant by
the relations

B(jo)=(E.jo—P)~'b, (5)
where E, is the n x n identity matrix.

We will say that the plant is given by a finite number of values of its frequency response
if the values of B(jw) are known for some set of distinct test frequencies w;, ..., wy.

The second kind consists of models described by equations of "input—output" form:
YV tda g0+ L Hdgtdy=ku+ . . +hatka (1<n), (6)
B tgh u 0 g lut g Yy o AT, (7)
where y(t) is the output variable of the plant (6), where y(i) and u{i) are the i-th deriva-
tives, the parameter dj, (i = 0, n—1) and kg (j =0, y) of the plant are unknown, and the
coefficients gi*, rj* (i = 0, n; j = 0, n) of the controller (7) are given.
We will assume that the transfer function of the plant (6)

kst .. tkstk, k(s)
_ s*+d,_ "'+, . +dist+d,  d(s)
is such that none of the roots of the polynomial k(s) coincides with the roots of the poly-
nomial d(s).

The plant (6) is asymptotically stable, or if it is unstable, it is possible to find
a controller

h(s)= (8)

n—i

X g m Niroyg (%), (9
o

{um0
such that the system (6), (9) is asymptotically stable [6].
Under this assumption, it is possible to obtain the values A(jw,)=a,(w,)e™ ™ (k=1{, 2n)
of the frequency response of the plant experimentally.

The problem consists in finding necessary and sufficient conditions (criteria) for the
stability of systems of the first and second kind whose plant are given by a finite

number of values of their frequency response B(jwg) (k = 1, n) and h(jwg) (k = 1, 2n), respec-
tively. In addition, w{ # wy for i # k, where i, k =1, nor i, k = 1, 2n.

3. First Stability Criterion

First of all, we obtain a necesary condition for the stability of the system (1), (2).
In this connection, we consider the inverse optimal control problem [3]. This problem con-
sists in finding a positive definite functional .

1= { [ Qa2 (z)ututlar, (10)
°
(@{1) 1s an n x n matrix and £ an n-dimensional vector) with respect to which the control

(2) is optimal.

If the syst?m (1), (2) is asymptotically stable and satisfies (3), then there always
exist a matrix Q 1) > 0 and vector £ such that [3]

Q=QW—II'>0. (11)

Since the matrix Q(l) and the vector £ constitute a solution of the inverse optimal con-
trol problem, they satisfy the identity [3]
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[1—(c"+z')(-E,jm;P+bz')-‘b][1—(c"+r)(E,.fm—p+bz')—‘b]-

=1+b'(—E,Jm—P+bl')"’0,(E,.jo)—P+bl’)“b, 0<o<o, 12) |
We use this identity and the inequality (11) to find Q(1) apg zlfor the given B(juwy) ! i‘i
(k =1, n) and c*. 3 'of%
Using the relation A? T
 (Bajo—P+bl') b= (E,jo~P)-1p[ 1+ (E\jo—P)-1b ), (13) g =

from [5], and taking (5) into account, we can write (12) in the form g
= (c"+)B(—j) [1+1B(—j0) |*} {1— (" +1')B (o) [1-+ fory
+'B(jo) ]} =14'l3'-(—1'm)[1+l'l5(-]'0)]"0:ﬂ(]'m) [1+U'B(jo) ] (14) : %
Finally, after some simple transformations{ we get j 4J§§
l'ﬁ(—fﬁi)"'l'ﬂ(f@)+B'(—i0'1)0“’ﬁ(70)='f(w), 0<o<w, (15) =
where % 1%§d
1(@) ==—c"5(—l'm)—c"ﬂ(im)"'ﬂ'(-iw)c"c"ﬁ(i‘ﬂ)- (16) . {;5

Putting w = wy (k = T, n) (in (15) and (16), we get the system of n algebraic equat

FB(—j@) +IB(jan)+B' (~j0s) Q9B (joy) =1( ) (k=1 7).

Proposition 1. The set of matrices Q(l) and vectors £
coincides with the se

ions | the 1

a7n = oy
which satisfy the system (17)

t of those matrices and vectors which satisfy (15). 1In other words,
(17) is necessary and sufficient for (15).

The proof of this

pProposition is simply a repetition of the proof of the analogous state-§ *i

ment in [5]. ; C

For convenience, we write (17) in matrix form. In this connection we introduce the !

notation : ey

81(w;) €08 @1 (@), - . ., @, (wy) cos.w,g(m;; 7 (@) f‘ E

a cos veo o Gy (@) coS @, (0 , ; ;

M=2 :l(mt) @1 () a_n( 2) Pn (0, . p= ‘T(“Jx) , ?"IS) mm

a; (0,) cos P1(@p), ..., a, (0,) cos Pn (©,) 7 (o)

N—=”§(—J'0.),.--,B(—J'm-)ll,,N+—Ilﬁ(ifm).-.-.B(}m-)ll, ‘ (19) for ke

and D{A} is the column vector whose components are the respective elements of the diagonal n

of the square matrix A. :

In this notation (17) takes the form for%u

, MIHD{N_"Q®N,} =y, (20) = an afdg

vhere the n-dimensional vector l ) 5

R

Y=—Mc*+D{N_'c*c"N,)}. (21) Lk

is known. ' : T

If ~ of ‘vectg

det M0, (22) i

then we find from (20) that : RN

1=M"'[Y—D{N-'Q'"N,}]. (23) (2) 1ﬁ

ficleme

Substituting this expression into (11), we get which an
Q—=M~'[y—D{N.'Q"'N,}] (1—D{N_"Q"N,})’ M->0, (24) :

If the plant (1) is asymptotically stable, then, as is shown in {7], the inequality (22) C iwm

-is fulfilled. If the p%ant is stable, begi?n}ng with (12), we must replace P by P(9) = p 4 . The

be(9)* ang g(ju) by gl (Ju) = g(jw)[1 - c(*)1g(ju)];

; then the matrix for the vector £ in from the
“(20) wil1 again be nonsingular.

ably 1{1
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If the syste? ;1). (2) is asymptotically stable, then there always exists [3] a positive
definite matrix Q\!) which satisfies (24) and thus this inequal%t¥ is a necessary condition
of stability. However, it can also happen that one obtains a Q1) > 0 from (24) for an un-
stable system (1), (2). The inequality (24) will be sufficient for the asymptotic stability
of the system under considezation if as a result of solving the problem of optimizing the
functional (10), in which Q 1) and £ are obtained from (24) and (23), we get

c=c". (25)

Passing to the consideration of the problem of the analytic construction of optimal con-
trollers for plants given by their frequency response, we write the functional (10) in the
form

‘J-j [z’ (Q("—u')z;%(uﬂ-l'z)‘]dt (26)

and introduce the "new" control
w=u+l'z. (27)

Then, if we take into account the notation (11), Eq. (1) and the functional (26) take
the form

Z=Pz+bu, z(t)=z'?, (28)
1= (zQa+ur)a, (29)
where
P=pP-bl. (30)
The "plant" (28) is given by the frequency response
Bi(jor) =(Enjor—P,) ~b=(Enjor—P+bl') b =B(j@)) [1+B(jo) ] (k=1 n). (31)

It is completely controllable since the controllability of the pair (Py, b) follows from
the controllability of the pair (P, b) [8]. It is possible to find a control

= (c+1) z=c "'z, (32)
for it such that the system (28), (32) is asymptotically stable.
The optimal control
u=c,'z, (33)
for which the functio??% (29) is minimized by motions of the system (28), (33) actuated by
an arbitrary vector x can be found by solving the recursive system [5]
—2Re{c,**"'B, (jau) [1—¢,*) "B, (—jen) ]} == (34)

-ﬁ!'("']‘mn) [01‘!'01(')01("] ﬂz(im) (a—O, i, ooy k-i—,-;).

The properties of the "plant" (28) guarantee [5] the convergence of the sequence cz(“)
of vectors, so that

lim ¢, ==¢,, (35)

K-> 00

Proposition 2 (stability criterion). For %hﬁ asymptotic stability of the system (1),
(2) it is nece?sgry that there exist a matrix Q\!) > 0 which satisfies (24), and it is ?ug-
ficient that Q'!) and the vector % found from (24) and (23) be such that the vectors cg(®
which are solutions of the system (34) have the property that

lim ¢, =c*+1, (36)

The practical application of this criterion is difficult because one must find Q(l)
from the nonlinear inequality (24). We note that in some cases this inequality is consider-
ably simplified. Thus if the condition

[1—c"B(—j0) 1 [1—c"B(jw) 1>1, 0<a=<>, (37)
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is fulfilled, then £ = @ [3], and we can find only Q(l) > 0 from the equality
D{N_"Q®N,}=y. | (38)

4. Second Stability Criterion

We introduce the functional

J = ‘ [e?2’Q®z+ (u—c*'z)*]dt, (39)

where Q(’) is an arbitrary given positive definite n x n matrix, and € is some number (un-
determined parameter). Wwe study the dependence on & of the control

u=c'(e)z, (40)

for which the functional (39) achieves its smallest value under movements of the system (1),
(40).

Proposition 3. If the system (1), (2) is asymptotically stable, then

, c(e)—~c, (41)
as € > 0, but if this system is unstable, then
c(e)~ctEc, (42)

as £ > 0,
The proof of this pProposition is given in the appendix.

To calculate c(e), we introduce the "new" control

u|=‘u—c.'z, (43)
then (1) and (39) take the form (28) and (29), where <ar
l=—c*, Py=P+bc”, Qi=eQ. (44)
Solving the recursive system (34) for these values, we get ;
¢:(e)=limc,™ {g), (45)
(for each fixed ¢).
According to (43),
ci(e)=c(e)—c* (46)

and consequently, if the system (1); (2) is asymptotically stable, then cg(e) » 0 as ¢ » 0,
and if it is unstable, then'cy(e) » c** — % . 0.

Proposition 4 (stability criterion). The system (1), (2) is asymptotically stable if §§
and only if the vector cg(e) produced by the system (34) for various values of € in (44) have
the property that . ,

c(e)—+0 as e—0. (47) |

The necessity of (47) follows from (41), and the sufficiency from the optimality of (43)

The relation (47) means that, for sufficiently small €, the vector cg(e) must be suf-
ficiently small. ~

To use the criterion in practicé, one must define what is méant by sufficiently small.
In connection with this remark, it is not difficult to show that

ca(e)=e’T (48)

(where T is some vector which does not depend on €), which holds for sufficiently small €.
In other words, if cg, the solution to the system (34), changes in proportion to €2, then
this means that the parameter e is sufficiently small.

We define the smallness of €g_in terms of its relation to the unknown vector c*, and
we say that cy is sufficiently small if
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lesl<les]  (i=1, m). (49)

5. Application of the Criterion to Systems of the Second Kind

We show that the system (6), (7) can be reduced to the form (1), (2), and that we can
construct the vector B(jwy) (k = 1, 2n) from the function h(jwy).
We write the control equation (7) in the form of two equations:
U @0+ it pou=u, (50)
i't—r.‘y +... +r,‘_,y""”+ (—g" +p)at ...+ (—g:_rl-p._‘)u("",‘ (51)
where py (i = BT'Ef:'I) are arbitrarily given posifive numbers such that the roots of the
equation u(s) = s® + p,_;s™"! + ... + y;s + p, = 0 have negative real parts.

Putting (6) and (50) together, we get the new "plant"

d(s)y=k(s)u, p(s)u=n. (52)
We introduce the notation
y=2,, =12y, ...,y V=2, e=Z,,,, Be=Ipg, - . - U D=y, (53)
crta =8 (g et G=1n) (54)
Then the Egqs. (52), (51) are equivalent to (6), (7) and take the form
=Pz + bu, (55)
3=08%1, (56)
where
T
‘3.:
U (57)
o]’
Znia
I
0 1 0,..., 0 0O 0 o0,..., 0
o o 1,..., 0 o o 0o0..., 0
}")= _do —d, —dv e e—Cp-1y kov ,‘11 klf' ' "n—l
0 0 0,... 0, o 1 0..,0 [
0 0 0,..., 0, 0 O 1, ..., 0
0 0 0,..., 0, —Wy —Iy —Har .oy —Rp-g
0 &
0 &
s _lo &
b=}, &*=|°n
0 &l
0 &
1 &

We now express the transfer matrix B(jwy) (k = 1, 2n) of the "plant" (55) in terms of
the known values h(jwg) (k = 1, 2n) of the transfer function.
By definition

B(j@) =(Esjo—P)—*b. (58)
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If we take into account the structure of the matrix P, we find that
T | T.1 1] __m-1 -1
1) Rl Eeul bt T;T‘ I, (59)
ofrd Tlol 1 |

(Eqnfo— P )=
where

jo —1 0,...0
0 ji -1,...,0
r=|. * : (60)

dy dy  dy... Jo+dn,y

0 0 0,..,0
0 0 0,...,0
T;= . ’
—ky —ky —ks » —kny

jo —1 0,...,0

) —1,...,0
T‘= : jm .

Bo W By ooy JO+ Pay

Since the vector B(jw) is the last column of the matrices T, 'T,T,”! and T,”!, we have
that

B (o) =B (o), Go) B (jan), . .. -
ve oy (@)™ B0 (jou), p (), . . ., (G0)*'p*(Jou) | (k=1, 2n), (61)
where
R (jou)=h(j@)p~*(jon)  (k=1,2n). (62)

Thus we have the "plant" (55) given by the frequency response (62). It is asymptotically
stable if the plant (6) is. This follows from the equality det(E,ps — PB) = det(Eps — T,) x
det(Eps — T,) = d(s)u(s). If the plﬁrt (6) is unstable, then using (9) it is posgible to
find a stabilizing control u = c(®)'x for the plant (55). g

From the components of the vector E(jw) in (61), (62) it follows that the "plant" (55)
is completely controllable only if the roots of the polynomial u(s) do not coincide with the
roots of the numerator k(s) of the transfer function of the plant (6). The "control law"
(56) is observable only if the numerator and denominator of the transfer function

[2 c“s“""] k(s)+[ i c.-'s"‘-”] d(s)

it ismndt

d(s)p(s) (63)

¢ 'p(s)=

do not have common roots. Under these conditions, it is possible to apply the first and sec-]
ond stability criteria for the system (55), (56), which is equivalent (in the sense of the
stability property under consideration) to the system (6), (7).

6. Examples
1°. We apply the first criterion to analyze the stability of the system

£y =Z,, Zy=—dox,—dx,+bu, u=c'z,+c;’z,. (64)
Concerning the parameters of the plant we know only that
d>0, d;>0, b0 (65)

As a result of trials with this plant under harmonic actions with frequencies w, =10,
w, = 20 we obtain the steady-state amplitudes and phase shifts

a,(@,)=3.3-10"*, @(@,)=—72°, a,(@:)=0.9-107°, ¢;(w.)=—128". (66)
in the variable x, at these frequencies.

It follows immediately from the equations of the plant that, for. x,,
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6 (0,) =,8,(0,) =3.3-10", @, (0,) = %— + ¢1(0,) =18°, (67)
9) 81 (@) =040, (0,) =2.7-102, q),(m,)--;+01(ﬁ)a)-—38°~ (68)
The control parameters of the system (64) are

. € '==27-10°, c,'=—1,6-10% (69)
Passing to an analysis of the stability, we put ¢, = 2, = 0, and we seek the parameters

q11 :nd 922 of the analog matrix Q(1) from (38). Using (18) and (19), we construct the
matrices :

30)

TCHL A i (@) (e
Ne= t»:z. (::n) einle 2l 4.8, (@,) 0o +nial "' (70)
M=2 ”a.(m.)mq:.(a.), 0441(01)008[‘?:(@:)4'3/2] ” (71)
’ at((o.)eosqu (03)' v ©a, (“l)ws[q’l("h) +n/2] ’

Equation (38) has the form

QT qraa,! = a‘:T.)[ —2¢,"a, (w,) cos ‘-Pt (o)) —

~2evma )oos] 2+ gu(o0) |+ e tataatan | (b=1,2) (72)
Solving this system for the values (66)-(69), we get

re

i) gu=8-10%, gq.,=3-10%. (73)
Hence it follows that the necessary condition for stability is fulfilled. To verify
2) the sufficient condition, we must solve the problem of minimizing the functional
ally 7=f 81000434045+t e (74)
L]
under Sovements of the plart (64) given by the frequency response (66)-(68).
)] The solution to this problem is obtained in {51 (p. 166), where it is shown that
‘he cbl_i.;‘!.w.“" =—2.710°, limc,'=—1.6-10°, which neans that the system (64) is asymptotically stable.
L I
2°, We apply the second criterion to analyze the stability of the system
&y=—doz+bu, un=c z,, (75)
for which the parameters of the plant (d, and b) ase unk?oyn. It is only known that b # 0.
In addition, it is known that the control u = c1(° Xy ¢;'%) = -3, for which the plant of the
3) system (75), closed by this control, is asymptotically stable. In this case it is possible
§ to determine the values of the amplitude-frequency and phase-frequency characteristics of
ec- the plant experimentally. Suppose that for w,; = 2.25 we have that
‘ 1t 1 n
a (0,) o = Wi(e@) 2
We will study two situations. In the first, c;* = -2, and in the second c,* = 2,
Passing to the analysis of stability for c,* = —2, we write (34):
%) —201““)“1 (0)1) [cos P (‘m)-cl(')at (o,) J=a? (w,) [3’9'11"'5!(.”]
(@=0,1,2,...), ’ (77)
where, according to (31) and (44),
5)
a0 e V=g (@,) e[ 1—ca,(@,) 0], (78)
Taking (76) into account, we get that
! @)= =, csqu(@)m 2 (79
a, @ --————-—' E 3 —
T Vegter 3 Y Yerter 3
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From (77) it follows that
et o a:(o,) [e*qy+c, "]
' 2[cos 91(0) —ci8,(w,) ]

) (a"oy 11 21_' . ') . (80)

From (32) we find that
: LA A (81)
Then, using (80) and putting e2q,; = 0.2, we get
cM=0.2; ¢P=—0.054; cV=—0.049. (82)

We put
_ e2g,=0.1. (83)

As a result, we find that ‘ : »

6V=—0.183; P=—003; c=—0.0248. (84) .

From the inequality |-2| » |-0.049| and the fact that cy is proportional to €2, we can
conclude that (75) is asymptotically stable for c,* = —2.

Now we let c,* = 2, 1In this case in (79) we must put cos (o) = -2/,  and in (81)
Cg‘(o)" c(o) - Ql* = -5,

For €2q;; = 0.2, we get by (80) that _
eMe=—42; M=—4054; ¢ 'P=—4.05.
For €2q,; = 0.1, we have
c,“’=—4.>18; M=—4.01; ¢ V=—4.005.
Thus the system (75) is unstable for c,* = 2,
- The author wishes to thank V. A. Yakubovich and the participants in his seminar for theifl
discus;ion of the first stability criterion.

: . APPENDIX
Proof of Proposition 3 . ' ' e

The vector c(e), which is the solution to the problem of minimizing the functional (39)
over the motions of the system (1), (40), satisfies the identity

[1=¢"(e)B(—3) M 4—c' (&) B (s) J=[1—c*'B(~2) J{A—c*'B(s) }+e2p (—s) QB (s), (A.1)
s=jo, K<, : :

It is not difficult to obtain this identity from (15) and (16) by replacing ¢* by c(e)
and putting : : :

Ime—c®, QUmQD)4c%c™, - (A.2)

We now investigate the dependence of c(e) on €. To do this, we represent the components
of the vector

B0 =F)ae) (=L, (A.3)
where | .
d(s)=det (Exs—P), (A.4)
-and we have put
By =B (), ..., Ba()N. (A.5)
Then (A.1) can be written in the form

Dy(~8)Dy(s) =D (~2) D" (s) + %5 (—2) QW s). ‘ (A.6)
Here '
Dy(s)=d(s)—c'()B(s), D"(s)=md(s)—c"p(s), (A.7)]

where D.(s) is the characteristic polynomial of the optimal system (1), (40), and D*(s) the |

‘characteristic polynomial of the original system (1), (2). If vi and 14 (i = 1, n) are the |
roots of these polynomials, then '
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Dc(‘)-II (3—‘W). D'(«I‘)-H (l—‘h). (A.8)

fumi {mmy

From the hypothesis of the boundedness of the integral (10) it follows that

Rew<0 (i=A,n). (A.9)
For definiteness, suppose that
Rewis0 (i=1,8), Rew»0 (i=8+Ln; 0<dé<n). (A.10)

1 Then § = n, which means that the system (1), (2) under consideration is asymptotically
" stable.

From (A.6) and (A.9) we find that as ¢ + O,

vou (1m1,8), vie—ti (i=6+1 n). (A.11)

‘ If § =n, then as € + 0, vy » 13 (i = 1, n), and consequently Dg(s) +» D*(s) [11]. This
|- means that if the pair (P, b) is completely controllable, then c(g) + c*.

[} »
If § < n, then D‘(')"II(""‘) H(:+r¢)"'D‘(') [11], and therefore c(eg) + c**, where c** is
fomg fmpti
a unit vector (by virtue of the fact that (P, b) is completely controllable) whose components
can be found by comparing the coefficients of equal powers of s on both sides of the equation

[ [ )
d(s)—c**'B(s) = H (s—%s) II (s+7,). (A.12)
fung fuad i
Since the equality
a@-efio= ] oo (A.13)

bl

is also satisfied for the unit vector c*, it follows from (A.12) and (A.13) that c** # c*.
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