DETERMINISTIC SYSTEMS

PROPERTIES OF ANALYTICALLY DESIGNED
NONSTATIONARY LINEAR SYSTEMS

A. G. Aleksandrov UDC 62~-501.45
The concept of transfer operator is introduced, as well as the concept of control sensitivity
operator of nonstationary systems. The optimality condition is obtained in operator form. It

is shown that the sensitivity to parametric disturbances is low, and a relationship is estab-
lished between controlled variables and disturbances.

1. Introduction

The analytic design of controllers (ADC) [1-3] is an effective method of design of controllers of linear
nonstationary systems. But it involves the complicated task of finding the coefficients of the optimization func-
tionals.

One of the methods of extension of the domain of applicability of ADC procedures is to study properties
that do not depend on the choice of the coefficients of the optimization functional, and to establish relationships
between the parameters of the functional and the accuracy, realizability, etc. Thus for stationary multivariable
optimal llnear systems we have obtained [4-6] the phase and absolute-value stability margins, as well as a re-
lationship between the structure and the coefficients ofthe optimization functional on the one hand, and the ac-
curacy, the bandwidth, the realizability, etc., on the other hand.

In this paper this method is extended to nonstationary optimal systems, i.e., we analyze the structural
stability and accuracy of such systems.

The study is based on the optimality condition in operator form obtained below which generalizes the opti-
mality gonditions of stationary systems in frequency form {7].

The structural stabllity is estimated with the aid of the concept of control sensitivity operator. This con-
cept is based on the well-known idea [8] of comparing the response of equivalent open-loop and closed-loop sys-
tems subjected to parametric disturbances.

2. Concept of Transfer Operator

Let us consider a control system whose disturbed motion is described in the first approximation by the
equations o

#=P(t)z+B(t)u, z(t) =z, telty,1.], (Y]
u=(C’(t)z, )

where x is an n-dimensional vector of phase variables of the plant, u is an m-dimensional control vector, and
P(t), B(t), and C'(t) are assigned matrices (the prime denotes transposition) of continuous and differentiable (as
many times as necessary) functions; the dimension of these matrices is nxn, nxm, and mxn respectively; x(©)

is an n-dimensional vector of initial conditions. The plant (1) is completely controllable, and the control law (2)
is completely observable.

Let us introduce the concept of transfer operator of the system (1)-(2) in the open-loop state. For this
purpose we shall replace in (1) the vector u by a vector r(t) of continuous functions, and we shall write for zero
initial conditions the solution of Eq. (1):

( 3
=)= [ Xt DB ()ds, @
e
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whére'X(t, ) is a fundamental matrix (9). tokiliis-aRbe kot vEbRbrob ot ot ok EBIE 6 Fl e iR 1o will be
u=C’(t) IX(t, 2B (x)r(v)dr. “)
t

The transfer operator W of the system (1)-(2) in the open-loop state will be the operator connecting the
‘vectors u and r taken with opposite sign. In accordance with (4), this operator will be

W=—C'MB, )

where C and B are finite-dimensional operators generated by the matrices C(ﬁ) and B(t) .,resbectively; the sym-
bol * dénotes the conjugate operator, i.e., C* is the operator generated by the-_matrbx C'(t); the operator M is
8n integral operator that maps the vector ¥ ) = B(t)r(t) into the veector x in accordance’ with formula (3).
_The opérator which.is conjugate to the transfer operator of the system {1)-(2) in'the open-loop state is de-
‘fined by
W =—B"M"C, ©6)
where M* is the conjugate of the operator M. .
For specifying conjugate operators, we shall consider below the space L,|[t,, t;]1 [9] of all continuous vec-
. [
tor functions defined in the interval [t,, t,] and which have a scalar product (h®(t), h@(t)) = j KO ()R (¢) de
: .
) (] AYs
and a norm 4@ I~ ( [ a0 ar )"
t

1t is easy to see that -
e
. (7)
My [ X (1,09 () dy.
, e
Now let us introduce the concept of transfer operator of a multivariable system that is open-loop with re-

spect to the v-th input of the'plant. In this connection let us express the equations (1)-(2) In the‘followlng ()]
equivalent form:

2=[P(t)+B(t)C (t) 1x+B(t) (i, ®)
u,=C'""\(t)z, ®)

v

where B(t)[,,] is the v-th column of the matrix B(t), C't)[¥] is the v-th row of the matrix C'(t), E-(t) is a matrix

of dimension n x(m—1) dbtained from the matrix B(t) by deleting the v-th column, and Z"’(t) is a matrix of di-
mension (m—1)xn obtained from the matrix C'(t) by deleting the v-th row.

The "plant™ (8) corresponds to the plant (1) closed by all the controllers except the v-th controller.
The transfer operator of system (8)-(9) in the open-loop state is
W=—C""M,B,,,, (10)
where M, is an integral operator (similar to the operator M) that corresponds to the matrix
Pyt)y=P@®)+B®)C ().
The operator (10) is called the transfer operator of the multivariable system (1)-(2) closed with respect
to the v-th input of the plant. :

3. Optimality Condition in Operator Form

Suppose that the controller (2) has been obtained by optimizing the system él\)-(2) (for any xm) in the
sense of the functional
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(where H(t) is an assigned matrix of dimension n Xn such that Q(t) = H'(t)H(t) is positive definite). Optimality
[10] signifies that the matrix

Ct)=—A()B(1), (12)
where A(t) is a symmetric matrix of dimension nxn that satisfies the matrix Riccati equation
A(t)=—A(t)P(t)—P'(t) A(t)+A () B(t)B'(t) A(t) —Q(2), A(t.)=0. (13)
THEOREM 1. The transfer operator of a system (1)-(2) that is optimal in the sense of the functional (1)
satisfies the equation
(Int+W)* (IatW)=I+H'H, . (14)
where I, is an m-dimensional identity operator (i.e., Imh=h),and A= HMB.
Formula (14) is called the optimality condition of nonstationary systems in operator form.

THEOREM 2. The transfer operator of a system (1)-(2) that is optimal in the sense of functional (3) and
is open-loop with respect to the v-input of the plant, satisfies the equation

(I AW) (LAW,) =l +HH  (v=1,...,m), 1s)

where Y = HYMy, By, H”' OHY(t) = Q¥ (1) = Q(t) =~Q(0)+C(6)C' ().
Theorems 1 and 2 are provided in the Appendix,

4. CoOrtrol Sensitivity Operator

Suppose that system (1)-(2) is subjected to parametric disturbances. This signifies that the matrices
P(t), B(t), and C'(t) can differ from the theoretical (assigned) values by certain matrices AP(t), AB(t), and
AC'(t). Parametric disturbances may have various causes (such as inexact description of the plant, inexact
realization of the controller parameters, "aging" of the system elements, etc.).

For characterizing the sensitivity of motion of the sysﬁem (1)-(2) to pai-ametrlc disturbances, let us in-
troduce a control sensitivity operator. For this purpose let us consider the motions of system (1)-(2) excited
by an m-dimensional vector of external disturbances f(t)€ L,(ty, t,]:

i=P(t)z+B(t) (at]), (16)
u=C’(t)z. amn
Let us establish a relationship between the control vector and the disturbance vector. For zero initial
conditions it follows from (16) that x = MB(u +£), with u= C*x=—W(u+f), and hence
um—(lat+W)='Wf (18)
(the symbol (— 1) denotes the inverse operator, i.e., A-1A = AA-1= Im).
A block diagram of system (16)-(17) that expresses the relation (18) is shown in Fig. 1.

The circuit represented in Fig. 1 has feedback. The equivalent circuit without feedback is shown in Fig.
2. The operator g of this circult is selected in such a way thatinthe absence of parametric disturbances and
zero initial conditions we have uy = u. By virtue of the obvious formula (Im + W)~ W = W(ly, + W)L, it follows
directly from (18) that

g= (It W)=, (9)
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The operators g and W can be realized by different physical devices; therefore the parametric distur-
bances of these operators are independent. We shall assume that the operator g is not subjected to parametric
disturbances.

Let us consider the difference between the control vectors for the original system and a parametrically
disturbed closed-loop system, i.e., e = u-uy. Forthesystem represented in Fig. 2 this difference is €)=

Up— Uggy «
The Iinequality
ledi>pllel, p>1 (20)

is called the condition of low sensitivity of a closed-loop system compared to an open-loop system.

The vectors e and e, occurring in this condition are related in the case of small parametric disturbances
by the following forrula (proved in the Appendix):

ev=(I.+W)e. (21)
With the aid of (21) we obtain a sufficient condition of low sensitivity expressed in terms of the transfer
operator of the open-~loop system:
(I (I + W) 2p?],. C(22)

Indeed, it follows from (22) that (I +W)* Im +W)e,e)= B(e, e), or, what amounts to the same || Im +
W)ell=8llell. Onthe other hand it follows from (21) that eTl egll = Iy + W)ell, and thus we have proved formula (22).

The operator (I, +W) occurring in (21) is called the control sensitivity operator. It differs from the oper-
ator introduced in [8]. By virtue of its construction, the latter is a sensitivity operator of the plant variables.

5. Properties of Optimal Systems

Property 1. A system (1)- (2) that is optimal in the sense of the functional (11) has low sensitivity to
parametric disturbances.

Indeed, by comparing (22) and (14), we conclude that property 1 follows from the inequality Iy, +H*i=
ﬂ’l,p. B>1, which is easy to prove by taking intc account that (H*ﬁvh, h) = 1 L2 = 921 hi2, y> 0, and bepce ((Im +
H*H)h, h)= Ihi? + Il bl = B2UhlI2, where f = V1 + 2 > 1, 7

Property 2. An optimal system (1)~ (2) has low senslﬂvity with respect to eacﬁ of the controller outputs.
This property can be expressed by the inequality
I AW) (L AW,) 3B, (B1) (ve=i,... ,m), (23)
and its proof follows from (15) and is a repetition of the previous proof.
In going over to property 3, let us consider the system

E=P (t)2+B(t) (u+]), n=C’ (t)z, 2®=0, 24)

0=N(t)z, @5)
where 6 is an m-dimensional vector of controlled variables, f(t) is an m-dimensional vector of external distur-
bances, N(t) is an assigned matrix of continuous functions of dimension mXn, and the controller matrix C'(t)
has been obtained by optimization of the system (1)-(2) in the sense of the functional (11) in which the matrix
H(t) = H,(t)N(t), with H,(t) being an assigned matrix of dimension m xm such that Qq(t) = H," (t)H,(t) is a positive-
definite matrix.

Property 3. The processes taking place with réspect to the controlled variables in an optimal system sub-
jected to external disturbances satisfy the inequality ‘

L) % .
frmememars [rwswma. 26)
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APPENDIX

Proof of Theorem 1. Let us consider the opérators
Iy=A+AP+P°A, Ty=ABB*A-H°H, (A1)

where A is an operator generated by the matrix A(t), and let us formthe products B*M*I'MB and B*M*I,MB.
By virtue of (13) we have I'; = I'y, and hence

B*M°T' MB=B*M"T:MB. (A.2)

Let us express the operators inthe left-and right-hand sides of this equation in terms of the operators W
and W*, It follows from (5), (6), and (12) that

We=B'AMB, W*=B'M*AB. (A.3)
From (A.1l) and (A.3) we directly obtain the right-hand side of (A.2) in the form
B MT MB=WW-HH, (A.4)

where H = HMB.

Now let us write the left-hand side of (A.2) by adding and subtracting from it the operator B*M*A(I, +
PM)B,

B°M'T MB=B'M*(A+AP+P*A) MB+B°M°A (I, +PM)B—B*M°A (I .+ PM) Baa B°M* (A+P*A) MB+B°M°A (I, +PN) B-W*. (A.5)

Below it will be shown that
M (A+P AYM+M*A(I +PM) =—AN. (A.6)
By subtracting this expression into (A.5), we obtain B*M*I'; B= -W-W¥,

By substituting this expression together with (A.4) into (A.2), we obtain the equation W +W* +W*W = ﬁ"‘ﬁ,
whence follows (14).

In going over to the proof of (A.6), let us consider
&% v
. 2l xanam {xaoema |a
~ !dY[ T 7.“: 7 %) 9 (T 1] Y.

On the one hand this integral can be written, by taking into account the boundary condition A(t,) = 0, in the
form B

e
d v
:f ;[ X @4 [Xaoemae ] ay

(A.7)
W poty b ¢ )
- [ X @04 [Xaoee dr] | = X' 04 [ XCu)9@dv- X' (040 [ X0t 1) 9@y drm-AMy.
) te et te A
On the other hand,
. X'y, A ’xu 1}¢(z)4¢]‘ay=}[ﬂ"—).4(1):fxu t)\pf:)dx]dy
tj a [ ’ ?‘: - ' i “a .
4 dA(y) v ' f FR
X - X(1, dtlay+ ] x@.nap—1\ Xy, dr | dy.
+7f[\u.o4 p ‘j (%] & 7([ DA “_& v dr
Since
dx’ (v, t)/dy=X'(x, )P’ (1),
d v v
'—'JX('{'f)ﬁ(f)d“-X(T-‘YH’('{)‘*IP(Y)X('KJ)?(T)"'»
d’ ty te
it followg that
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e, L4

a
I - [ X'(1,04(1) J' X1, 7)) dr] dy = MP*AMp+ M AM9+ M*A[1, +PM] 4.
[ Y 1s

By comparing this expression with (A.7), we can see that (A -6) is valid. This completes the proof of Theo
rem 1. 1

Proof of Theorem 2. At first let us find a matrix C'(t) of the controller (9) for which the system (8)-(9) is
optimal in the sense of the functiona]

'- y oy (A.8)
I={Ro+Coto=+uia,
[ .
v v
where E(=—4@ F .
The sought vector is specified by the equations
‘ C(t)==4%()B(f) v, ' (A.9)

v v
PO=—AOP,O— P, LO+L0BOWB OmAO—QO —A0FOF © 4@, 42¢)=0. (A.10)

By substituting into (A.10) the expression for Py, (t), we can easily see that this equation coincides with (13),
and hence A”(t) =A(t). This signifies that Cot) =—A(t)B(t)M. From the optimality of system (8)=(9) in the sense
of the functional (A.8), and from Theorem 1 and the last equation it follows that (15) is valid. This is true for
any v, and thus we have proved Theorem 2.

Obtaining the Sensitivity Operator. Let us consider the system (16)-(17)

2=P(t)z+B(t) (u+f), u==C’(t)z.
Under parametric disturbances the transfer operator will be
‘ WamW+AW
and the controller output signal
g~ (Im+Wo) =1 Waf. o (A.11)

The difference
emt—tig=— (Lt W)~ Wi+ (I W)~ Wef
== (It Wa) ~H{ (It W+AW) (Tt W) S W—-W—-AW)f (A.12)
== (Ut Wa) " AW{(ln+ W)~ WL},

By taking into account the formula Im + WY 'W—1Ip= ~(I;+W)~! whichis easy to prove, and by muitiply-
ing it from the left by (Im +W), we finally obtain

€= (T Wa) ~'AW (Tn+ W) -1}, (A.13)
Now let us consider the open~loop system shown in Fig. 2. Under parametric disturbances we have
Usa==Wogfr~Wo(lutW)-1f. (A.14)

Let us note that in this equation the operator g remained unchanged, since by construction it has the pur-
pose of ensuring the equivalence of the circuits represented in Figs. 1and 2 in a parametrically undistyrbed
state, and after its construction we must therefore *forget" about its origin and assume (as in [8]) that the opers
tor W occurring in g coincides oniy formally with the operator W of the system (1)-(2).

By constructing the difference
Com=tg—Do, =AW (I + W) ~!f (A.15)
and comparing it with (A -13), we conclude that
eo=(lutWa)e. : (A.16)

In the case of small parametric disturbances we haye Wy =W, and therefore (A.16) can be approximately
written in the squght form (21).
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In conclusion let us note that in deriving the formula (A.16) we used the formal expression (I, +W)~!.

Let us show that this operator exists. Indeed, it follows from Fig. 2 that the vectors f and ¢ are related
by the equation

(UmtW)o=f.

In more detailed form, this equation will be written as

[
0 [ COXCIB@ew =10 (A.17)
te

and 1t constitutes a system of Volterra equations of the second kind. Since the elements of the kernel K(t, 1 =
C'(HX(t, nB(r) and of the vector {(t) are continuous functions, it follows that (A.17) has a unique solution [11},
and therefore the operator (I +W)-! exists.

Proof of Property 3. Let us ﬂnd an operator that connects the vectors 6 and f in the system (24)-(25):
8=NzexNMB I (In+W)~'WIf.

By virtue of the mrm Im— (Im + W)W = (I, + W)~!, we obtain
| OmNMB(IL W)Y, ' (A.18)
It is easy to see that )
(8.8, B0) = (H(La+ W)=}, H(Iu+W)=if)= (T H(Ia+ W)Y, (la+W)~Y), (A.19)
where H = H,NMB.

Taking into account the optimality of the controller of the system under consideration, let us eliminate
A* from (A.19) with the aid of (14). Hence we obtain the formula

(Ut W)* (I 4 W) =1) (Im+ W)=}, (l-+W)"f) =(f, N-((Int+tW)=Y, (IutW)=41),

whence It follows with the use of (A.19) and of the lnequallty (I +Wr'f, (Im+W)-'0= 0 that (H,8, H,8)=< (I, f).
Thus we have proved the property 3. .
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