LYTICAL SYNTHESIS OF CONTROLLER TRANSFER MATRICES

THE BASIS OF FREQUENCY DOMAIN PERFORMANCE
TERIA, 1

A. G. Aleksandrov and N, A, Nebaluey UDC 62-50

Concepts of frequency domain performance indices of systems with m controllers are introduced.
A synthesis problem of controller transfer matrices is formulated, A theorem underlying the solu-
tion of this problem is proved.

INTRODUCTION

Systems with several controllers and a number of controlled quantities are widely used in control engineering,
particular, stabilization systems of aircraft and gyro-platforms, especially in cases where the interaction of sta-
zaton channels cannot be neglected, belong to such systems. Basic results of the frequency-domain synthesis
ory [1, 2] apply to the case of a single controller,

In this paper we present a formulation and solution of the synthesis problem of the controller transfer matrix
Lo the basis of frequency domain performance indices.

Papers on the theory of analytical design of optimal controllers [3] and those on the study of frequency do-
main properties of optimal systems [4, 5] were the starting point of the investigation whose results are presented here.

1. FORMULATION OF THE BASIC PROBLEM

We consider the control system described by the equations
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Equations (1.1)-(1.3) describe the plant. Here z;(t) (i = 1,..., p) are the coordinates of the plant, yj (t) (i
1,...,1) are the variables of the plant accessible to direct measurement, y;*(t) ({ = 1,..., §) are the controlled
variables ("outputs® of the plant), uj (t) (i = 1,..., m) are the coordinates of the controllers ("inputs" of the plant
fi® @ =1,...,p) are external disturbances, and s = d/dt (in addition, the letter s is used also as a symbol of La:
place wransformation for zero initial conditions);

e bup
Qvﬂ(s) =Z q:ﬁsi (v, B=1,...,0) va(s)’_-“‘zn“'ﬂs{ (v=1,..,p: B=1,.., m)s
] i==0

where 2,5, b, are the degrees of the polynomials Q,g(s) (v, 8 = 1,..., p) and Nyg(® (v =1,...,p B =1,...,]
m), respectively.

Equations (1.4) are the controller equations, in which

lvp ) ty
re() =3 rigs (v=1,..,mB=1,.,nd()= Nds'(v=1,.,m),
i=0

{==0

where [, g, t,, are the degrees of the polynomialsr,g(s) and d, (s) (v = 1,..., m; 8 = 1,..., 1), respectively,
The system (1,1)-(1.4) can also be written in the more compact form

Q(s)z = N(s)u + Lf, G QT

y = Dz, (L2

y* =Dz, (139

u=R(s)y, (1.4

where Q((s), N(s) are polynomial matrices of dimensions p X p and p X m respectively, R(s) is a transfer matrix of
dimensgion m Xr, D, D* are matrices of numbers with the dimensions r X p, & X p.

The transfer matrix R(s) of the controllers is said to be relizable, if among its elements

R“(s)=r‘;:'g; E=1,...,m; j=1,...,7)

there are none.with the degree of the numerator greater than the degree of the deonminator, In a contrary case the
transfer function R(s) is said to be nonrealizable. According to this definition R(s) is realizable, if the inequality

ly<t, (v=1,...,m; B=1,...,1) (L
is satisfied.

Often only the maximum value f- ; is known about each component f; (i = 1,..., p) of the disturbance vectof
We shall study the system (1.1)-(1,4) in the case of typical (or the most unfavorable) action having the form

fi = const for >0,

() = 1,
@) {O for t<CO0. .9

We shall use the frequency domain performance indices [1, 2] to assess the performance of the system (1,1)- :
(1.4). '
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. For this represent the system (1.1)-(1.4) in the form of m equivalent systems, Each of these systems (for ex-
. ample, the v-th system) consists of a "plant” [which is the plant (1.1) closed by m-1 controllers] having the v-th
g controller.

The usual concepts of the transfer function wy, (s) of an open-loop system —the phase margin ¢my, the gain
} margin L, the oscillation index My andthe crossover frequency wcy —are applicable to each of such equivalent sys-
E tems,

The transfer function w, (s) is called the transfer function of the system (1,1)~(1.4) opened at the v-th input
¢ of the plant, while the values of ®mys Ly, My, are called the performance indices of the v-th controller (v =
L., m),

Side by side with these performance indices of multidimensional systems with m controllers we shall use the
- generalized frequency domain performance indices introduced in [5]. These performance indices [connected with
the characteristic equations of the system (1.1)-(1.4) in open-loop (all inputs are open) and closed loop states, Dop(s)
¢ and D (s) respectively] are given by relationships

. ) ) 1
O = n 4 argu, (]mgce), L = min {' Re we(joy) Im|} ’

M= _|we(o)| 1.7
v<use |1+ 2e(j0)]’ (

where we (), w;, w,, w%e are determined from the equations

Dg (](0) —1
Dop (jo)

Vool Yop(—TafE) = 1.

We call wg (s) and w%e the generalized function and the generalized crossover frequency of open-loop systems,
 while the indices (1.7) are called the generalized performance indices. The performance indices (1.7) are poorer in

E  their physigal content than the above system of v-th indices, and in contrast to the latter, they cannot be determined
I directly from results of an experiment, When m = 1, both systems of frequency domain performance indices intro-

. duced here coincide with the usual ones.

we(]u)) = ’ Im we(jmi) =0 (l = 1’2)1

The system (1.1)-(1.4) is considered to be "good" with respect to its frequency domain indices, if the conditions

= or

Pmi=Cm, Li= L, M, << M* (i=1,...,m), (1.8)
DGR ® g (i=1,...,m) (1.9)

08 =q B> L, M=< M, (1.10)

e~ o (1.11)

b are fulfilled. Here gy = 30°-45°, Le = 2-10, M = 1.5-2, while we, we' are given numbers.

3 The accuracy indices of a control system usually are the values of the static errors ({sp i=1,..., &) and the
i dynamic errors(y{gun' i = 1,..., 8) caused by the action (1.6). In this investigation accuracy of the system (1.1)-
£ (L4) is established only by values of the static errors, i.e., for this system the inequality

_ ly:s[ |<y;*st‘ (i=1,...,9) (1.12)
must be satisfied (y{g, are given positive numbers).

3 Problem 1.1. Suppose we have a control system with-a plant described by Egs. (1.1)~(1.3), in which the poly-
nomial matrices Q(s) and N(s) and the matrices of numbers L, D, D+, f are given., We have to determine a realiz~
able ransfer matrixR (s) of the controllers (1.4) such that the system described by Egs. (1.1)-(1.4) would be asymptot-
| feally stable, that it would satisfy the accuracy requirements (1.12) and the performance requirements (1.8) or(1,10),
F and that the generalized crossover frequency w%e would be close to a certain w, given in advance,
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The solution of this problem presented below applies to a case where the measured and controlled variables
coincide, i.e., y; () =y;*() (i =1,..., r=8), In addition, the restriction r = m is used to satisfy the requirem |
(1.12). ,

2, SOLUTION OF THE BASIC PROBLEM
We shall briefly describe the basic steps of the solution of Problem 1.1,

A formula for reducing Eqgs. (1.1) to the Cauchy form is obtained in Appendix 1, After such reduction Eq, |
(1.1) and the relations (1.2) are written in the form

& = Pz + Bu + Mf, (2.1
y = Dz, (2.2
where P, B, M, D are matrices of numbers with the dimensions n xn, n Xm, nX u, r Xn, respectively,

Side by side with the nonhomogeneous system (2.1), (2.2) we shall consider the homogeneous system

& = Pz + Bu, | .4

y = Dz, (2.9

We assume about the properties of the matrices P, B, and D that the equations
rank 1B, PB,... P8 =p, .4
rank [|D’, (DP)’,.. ., (DP*-')'|| = n, (2.4

are satisfied. These equations indicate that the plant (2,1) is completely controllable, and that it is completely o}
servable from the signal (2.2).

We shall present the results of the solution of two problems underlying the solution of Problem 1.1,

Problem 2.1. (The problem of analytical controller design [3].) Suppose there exists a system which is de-
scribed by the equation

£ = Pz -+ Bu. = 2.9
We have to set up a controller equation
u=Cgz (2.6}

such that the system (2.5), (2.6) would be asymptotically stable and that, in addition, the functional
I = 5' (z'Qz +u'u)dt (£'Qz>0 forany z) 2.7
0 3

would be minimized for motions of this system with any initial conditions,

The analytical and numerical solutions of this problem are well known (3, 6]. The sought matrix C' (of di-
mension m Xn) is a solution of the systemn of algebraic equations

AP 4 P'A— ABB'A+Q =0, 2.9)]
C = —AB (2.9
(A is a positive definite symmetric matrix of dimension n X n),

We note that for the existence of the nontrivial solution u = [0] of Problem 2.1, in the case of nonnegative
definite matrices Q, the condition [7]

) rank (|H', P’H’, ..., (P")"*H’| = n, (2.10)
must be satisfied. Here Q = H'H (H has dimensions ® X n, % is the rank of the matrix Q). :

The result of the solution of the second problem applies to frequency domain properties of optimal systems,
We shall formulate it as a theorem.,
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1 eem 2.1 If we have a control system described by Eqs. (2.5) and (2.6), and its controller has been ob-
4s 4 result of solving Problem 2.1 which minimizes the functional (2,7) with an arbitrary nonnegative matrix
h satisfles only the condition (2.10), then this system has the following frequency domain properties:

dm =600, FF>2 ME<2, (2.11)
0, =60°% Li=2 M<2 (i=1,...,m). (2.12)

peoof of the property (2.11) in the case of a sign-definite mauix Q (i.e., ® = n) is presented in [5]. How-
e course of this proof is not altered for the case of a nonnegative matrix Q (% < n) which satisfies the condi-

Vt ghau prove the property (2.12). We write the system (2.5), (2.6) in the form of equivalent systems:
' t=[P+BC)z+ Byu(v=1,...,m), 2.13)

1 u,=CMz (v=1,...,m), (2.19)

k,,] is the v-th column of the matrix B, c'[v1is the v-th row of the matrix C', and Bx is a maurix of numbers
ension n X(m-—1), obtained from the matrix B by striking out its v-th column; (‘f is a matrix of nhumbers
B¢ dimension (m-1) xn, obtained from matrix C' by striking out the y-th row.

‘l’b transfer function of each of the systems (2.13), (2.14) has the form

: - W(8) = —C'M[Es — P*]-'Byy, (v=1,...,m), (2.15)

papflp=1,.. , m). Each wansfer function w,, (s) complies with the definition, introduced earlier,

nsfer function of the system (2.5), (2.6) opened at the v-th input of the plant.

¥o consider the p-th system of (2.13), (2.14):

2 =[P+ BC')z + Byw, (2.1
Uy = 'z, (2,17

note that from optimality of the systems (2.5), (2.6) we have

' C'"l = {AB;,}, (2.18)

| ¢’ = {AE‘}’, ' (2.19

i qnulx A having dimension n xn is the solution of Eq. (2.8).

now find a controlier equation

Uy ==0C"z (2.20)

e functional

T ’ e PI 2
I={12(Q+CE)z+ulat. (2.21)
0 .
;minimized on the solutions of the system (2.16), (2.20).

an the form (2.8), (2.9), with (2.19) taken into account, we write the system of equations for the sought
Cos

A (P—BB A+ [P —BEA) A — A'B, By A"+ Q + ABB A =0, (2.22)
- C* = —A*By,. (2.29)
ion (2.22) can be represented in the form

AP+ PA— ABBA— ABB A — A'BBl,A + abfra+ 0 =0, (2.22)
# obvious that '
: | A* =4 (2.24)
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is one of the solutions of this equation, since for A* = A, Eq. (2.22) coincides with (2.8)., Equation (2.22) is satisfl
by the only positive definite matrix A®. Consequently, this matrix is given by the expression (2.24).

It follows from (2,23), (2.18) that »
C* = Cl, (2.2

The system (2.16), (2.17) with a single controller (2.17) thus is optimal in the sense of the nonnegative func
tion (2.21). This optimal system [4] possesses the property (2.11) (we recall that form = 1, <p§1 =¢m L° =1,
M® =M).

The above results are valid also for the remaining m—1 equivalent systems (2.13), (2.14). Consequently, t
properties (2.12) of the optimal system (2.5), (2.6) have been proved,

The subsequent solution of Problem 1.1 rests on the properties (2,11), (2.12) of the optimal system (2.5), (2,
It consists of setting up the structure and choosing the parameters of the optimization functional such that the con-
troller transfer matrix obtained from (2.6) (after substitution of the vector x by a corresponding operator of the vec
tor y) would be realizable and would satisfy the requirements (1,12), (1.11) imposed on the control accuracy and t
crossover frequency,

APPENDIX

Reduction of a System of Differential Equations to the Cauchy Form

We write the system (1.1), (1.2) in the form

v vt v—1
(; 0‘:‘) $= (;’ N‘:‘) u+ (;l L‘s‘) 1, | (A.
y = Dz, (A.

where Qi i=0,...,v), Ni, Li (i=0,...,v)are matrices of numbers, made up of the coefficients of the corres
ing powers of s of the matrices Q (s), N(s), L (s).

Equations (A.1) and (A.2) must be reduced to the Cauchy form o
& = Pz + Bu+ Mf, (.
y = Dz, (A9

where P, B, M, D are matrices of numbers having dimensions n X n, n X m, n X y, r X n respectively; xisann-dimej
sional vector which in the general case has (vpo—k) components. The coefficient k depends on the rank of the ma-
trices Q1 (1 = 0, ...,v). In particular, for |QY ] # 0, we have the equation n = vp,

We assume about Eqs, (A.1) that the right side of each of the equations making up the system (A.1) has a powl
of s which is at least by one lower than the power of the left side of the same equation. This property of the system
(A.1) is called the property "H." We also consider the condition

[Q(s)] =0 (A.9)
as fulfilled.

The transition from the system (A.1) to the system (A.3) in the case of a nonsingular matrix QV, as well as in
thecase NN=0, Li=0@G=1..., v-1),is described in [8, 9].

Below transformation into the Cauchy form is considered in a more general case,

Let the rank of the matrix Q¥ be r; < p. Multiplying the separate equations of the system (A.1) by certain co
efficients and adding them to one another, we can represent the coefficient matrix of the system (A.1) in the form ‘

A;' } n QV—I =

Yn—r

A;"l
a5 |

}r

’
}n—n

Q=

r A?
} s Q"-_-.” 01
}n—r1 A’
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Vel v—0 0
N-1= ! }" , NI B }"1 .., N'= 7
3 n—ry B Vp—ry B’
1 v—-1 } 2 2 } : (4.9
5| . T bn N i1 )
» 0 |}n—n Gt lyn—n c3
Here and subsequently we assume that the properties "H" are invariant with respect to equivalent iransforma-
fions of the system (A,1) which lead 1o (A.6).
e S Forming new mauices from (A.6) by interchanging the (n—r,) last rows of the i-th matrix with the (n—r,) last
gows of the (i + 1)-th matrix (i = 0, ..., v), we obtain;
?) 2 A }r1 - A;'l o AS }r1
1= ’ sy = ’
3= A4 n—r ! At }n—n
he
Bv-l n Bv_a Bo
M_l = 1 } , N2 1 , . NO - 1 , (A 7)
B tn—n B} 0 .
Vo] 2
P b T e v D= o
2 rn—n c;8 0

; We note that the transition from the matrices (A.6) to the matrices (A.7) corresponds to differentiation of the
1) Jlast n—r; equations of a system of the form (A.1) with matrices (A.6).

The rank of the matrix Q1 equals ry + 1, = r‘l. If 1y + 1, < p, then transformations (A.6) and (A.7) must be re-

y Jpested for the mauices eid=o,...,n N Lia=0,..

As a result, we obtain the matrices Q,, NI, L,i.
jthese wransformations until the equation

., v—1).

N;—luv-2

1
—L]f b TR

If the rank of the marix is less than p, then we continue

(A.8)

(A.9)

— L;—lfv-'a'

Eliminatmg the derivatives z and substituting expressions for x'into (A.1), after elimination of z by means of

3 - rank Q5 ==p
y B satisfied.
y Similarly to [8], we introduce the new variables
n zv = Q;z’
2Vl Q‘f'lz + Q"i — N‘f'lu - L;'lf,
; P —QJz+Q”z+...+Q“ - Nh—.—
) Bz= Qe

~ #=— Q) 2"+ Nju+ LY,
l - = — QHOYT S + Nju+ LY,

_tv—]. = 2%

2V = 2V

P— QP (@) ra’ + Ny P LY,
P— Q@) + Nyl 4 LY.

(A.10)

From the structure of the matrices Q°, N’ L in (A.7) we see that the vector x! has r; independent components,
{ while the derivatives of the remaining n—r; components are zero. Therefore we neglect these components as linear-
ly independent. Analogously, we conclude that the vector x* hasr, + 1, independent components, and so forth,

1877




where

&
Ii, ..., Iy are blocks made up of the first iz Tt columns and ‘21 ™ rows of a unit matrix k = 1,...,1
=1 -

L

8.
9,
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The vector x is thus made up of the following independent components:
T B T B, i; r,zﬁ wel a2 g
1

fasl
From (A.11) the system (A.10) can be written as

£w=Pz+ Bu+4 Mf, y=Dz,

£ 1,

T1 ey {==1 [ [d
e —— -
n{j 0o o 0 0 - =@
ntn{] L © . 0 0 . — Q@)
- P :
j : .
izlri{ 0 0 ... I; 0 ...-—QRQ)|,
e{f© 0 ... 0 E ... Q)
e{] O O 0 0 ... .E—Q;h (@)
= P
r1{ Ng rl{ L‘;
r1+ra{ le r1+ra{ L}
B == . E E 5 M= : . . R
z -1 é‘ J-1
> r‘{ N} il L |
=1 . fam] v
ot | et 4
{1 A7 el
:?- Ty

Ty Tydly fm=] 9,.

D=DQ, @=p {0, 0,....,70, ... @I,

B4
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