FREQUENCY PROPERTIES OF OPTIMAL LINEAR SYSTEMS
WITH SEVERAL CONTROLS
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The optimality conditions are derived in frequency
finitions of modulus and phase stability margins (L)
finitions of oscillatability index (M) and cutoff freq
derived optimality conditions with consideration of the definitions which have been introduced,

it is shown that, just as in the case m = 1[1], the frequency properties of optimal systems are
-described by the relationships ¢ *= 60°, L = 2, and M = 2,

form for systems with m controls. The de-
and (¢* are introduced, as well as the de-
uency. As a result of the analysis of the

1. Definitions and Notation

Assume that we have a control s

ystem whose asymptotically stable perturbed motion can be described by the
equations

=Pz + Bu,
u=_C,
where P, B, C are number matrices having the respective dimensionalities n x D, nxm, and m x n; x(t) is the n-
dimensional vector representing the phase coordinates of the plant; u(t) is the m-dimensional control vector,
We shall assume that the plant is fully controllable and that the control law (1.2) is fully observable,

Going over in (1.1), (1.2) to Laplace transforms for zero initial conditions, we formulate the transfer matri ces
W (s) and Welo (9 of this system in the open-loop and closed -loop states [2];
W(s) = —C’(Es — P)~B, e
Welo (8)= —(E + W(s)}-1W (s).

The elements wij(9), Wijclo® (1, i =1,...,n) of these transfer matri

ces are the transfer functions of the sys-
tem (1.1), (1.2) from the j-th coordinate of the input vector to the i ‘

~th coordinate of the output vector.
The transfer matrices (1.3), (1.2) can be derived from the equations

szt =Pz + B(u+7),
u=C_Cr,
where 1(s) is the m-dimensional perturbation vector,

o

1.1 §
(L2)

In fact, if we place u = 0 in

(1.1%) (this corresponds to opening of the system), then from (1.1'), (1.2 it fol-
lows that

U=C'z'=C'(Es — P)~'Br — —W(s)r;

however, if the value of the vector uin (1.1%) is determined on the basis of (1.2), then we obtain
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u=Cz=C'(Es— P)-'B(u +7r),
hence
u=={E — C'(Es — P)"'B}~'C'(Es — P)-'Br= —{E + W(s)}~'W(s)r.

The characteristic equations of the system (1.1), (1.2) in the open-loop and closed-loop states have the form

Es—P B
Do (s)= | v gl=0 (1.5)
D,(s) = |Es—P| =0. (1.6)

Using the properties of determinants comprised of four blocks [3], we represent the characteristic polynomial
f £4. (1.5) in the following form for the condition Dg (s) # 0:

Deyo(s) = |Es—P —BC’'| = |Es—P| |E—C'(Es—P)~'B| =D_(s)|E + W(s)|- (1.7

We introduce the definitions of the cutoff frequency, the stability margin, and the oscillatability index for the
tem (1.1), (1.2). Note first that the mathematical expression for these characteristics in the case of systems with
control can be represented in the form of relationships between the characteristic polynomials D¢y (s) and Dy (s)
various values of s = jw. This relationship, in general, does not depend on the control-system structures corre -
onding to the specific polynomials Dc1o (8) and Dy (s).

In fact, if we use the substitution

‘I’l(s) = Dclo (S) /Do(s)’ (1.8)
stability of the control system is determined on the basis of the Nyquist-Mikhailov criterion [4, 5] by the shape
 the curve
. Dy, (jo)
jo) =Yy (jo) — 1 ==Clo V) _ 4 (1.9)
¥ (fo) = 1 (jo) Bie)

 the’ MY, (jw), Re ¥,(jw) plane, The phase and amplitude stability margins and the oscillatability index are de-
mined from the following expressions, respectively:

9" = x + arg Ps (ja), (1.10)
. . i

L = min {Re '(l?. (](!)1), _RW} y 1. 11)

mod v, (jo)
M = max 2oC¥aljo) (L.12)

O<W<xoo mod ¥, (jo)

w,and w, satisfy the condition

Im P, (jo) =0, (1.13)

the cutoff frequency w, is determined from the equation

Y2 (joc) Y2 (—joc) = 1. (1.19)

It is natural to determine the cutoff frequency, the stability margin, and the oscillatability index for systems
ving several controls on the basis of Eqs. (1.10)-(1.14) (it is obvious that for systems with one control the function
4(8) is the transfer function of the open-loop system).

Note that in determining the stability margin of the system (1.1), (1.2) by means of Eqs. (1.10), (1.11) it is as-
mmed, just as in the case with one control [4, 5], that w, is unique and that the real part of the roots of the polyno-
1 D, (s) is nonpositive,
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2. The Frequency Form of the Optimality Condition

for Systems with Several Controls

We shall assume hereafter that the system described by the equations
& = Pz + Bu, (2.1
u=_~0z, (2.2)

is optimal in the sense of the positive definite functional
o
J= S (z'Qz + u'u)dt, (2.9
°

i.e., the controls (2.2) are such that the function (2.3) having the positive definite number matrix Q is minimized
along the solutiens of (2.1), (2.2).

The optimality of the control (2.2) means that the matrix C satisfies the following algebraic equations jointly
with a certain positive definite matrix A [6];

—AP — P’A + ABB'A = (), 2.4 1
AB = —C. : (2.5 3

In order to obtain the optimality conditions in frequency form we add and subtract the quantity sA in the left
side of (2.4) and multiply, as in [7], the resulting equations by B'(~Es—P)~"" on the left side and by (Es—P) "*B on the
right side; as a result, we obtain y

B'(—Es—P)-VAB + B'A(Es — P)-'B
+ B'(—Es — P)™"(—Q + ABB'A) (Es— P)-'B =0.

Representing the matrix Q in the form Q = H'H (Q and H are number matrices having the dimensionality nxn)

(2.6)

and introducing the substitution e
| H(s) = H(Es— P)-1B, @0 |
we obtain the following result from (2.6) while taking account of (2.5), (2.7), and (1.3): .
W (—s)+ W (s)+ W’ (—s)W (s) = H' (—s) H(s). (2.9) |
Adding a unit matrix to both sides of Eq. (2.8), we finally obtain :
{E+W(—s)){E+ W(s)} =E + H' (—s)H(s). (2.9

Equation (2.9) is the optimality condition for the control laws (2.2) for s = jw, expressed in frequency form.
Based on (2.9), it is similarly possible to write :
|E + W(—s)| |E+ W(s)| = |E + H'(—s)H(s) |. (2.10)
3. The Frequency Properties of the System (2.1), (2.2), Which Do Not Depend i

on the Specific Choice of the Parameters of the Optimization Functional

We first express the function ¥,(s) appearing in Eqs, (1.10)-(1.14) in terms of the elements of the transfer ma-?
trix of the open-loop system (2.1), (2.2). 4

Based on (1.7, (1.8), we can write E
ile) = |E+W(s)l. @]

Using the properties of the determinant of the sum of the matrices [8], we represent this determinant in the
form

|E + W(s)| =1 + R(s), (3.2}
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Thus, if the mauix Q of the coefficients of the optimization functional (1.3) is chosen in such a way that the J
equation i

|E+ H' (— iog) H (jog) | = 2 4.3
is satisfied, it follows that the value of w.* differs from unity by no more than a factor of 2.5 at the frequency
N(we*).

Let us now examine the relationship between the elements of the matrix Q and the error vector, Under these 3
conditions we restrict ourselves to the case in which not all of the phase coordinates of the plant (2.2) are accessibled
to measurement, but only the coordinates of a certain m-dimensionalvector y canbe measured;this vector is related §
to the vector x by the relationship

y= Dx, 4.4 ?
where D is a number matrix having the dimensionality m xn.

Assuming complete observability of the vector x, we express the latter in terms of the coordinates of the mea-
sured vector y and represent the controls (2.2) in the form ]

u = C’(Es — P)-'B{D(Es — P)—'B}—y. (4.5) 3
Equation (4.5) is not difficult to derive after eliminating u from the expressions ‘
z= (Es—P)-'Bu, y=D(Es—P)~'Bu
and substituting the result into (2.2).

We establish a relationship between the perturbation vector (r) and the error vector ( y) which is produced by
this perturbation in a system having - '

sz = Pz + Bu + Mr, (4.6) |
where M is a number matrix having the dimensionality n xm, and the controller equation is given by (4.5).

Equation (4.6) can be represented in the following form while taking account of (4.4):

{D(Es — P)~B}~'y = u + {D(Es — P)~B)}{D(Es — P)-M}r, i
whence it follows with allowance for (4.5) that 4
{E + W(s)}{D(Es — P)~'B}~'y = {D(Es — P)-'B}-{D(Es — P)M}r (4.7 §

or

Y'(—8){D(—Es — P)~'B}~V{E + W(—3)}{E + W(s)} {D(Es— P)~'B}-y(s)
=r'(—s) {D(—Es — P)-\M}’{D(—Es — P)-'B}-v
X {D(Es — P)~'B}~{D(Es — P)-'M}r(s).
Taking account of (2.9), we write (4.8) in the form
Y (—s){D(—Es—P)-'B}-Y{E + H'(~—s)H(s)}{D(Es — P)-'B}-1y(s)
=r'(—s) {D(—Es — P)~'M}’{D(—Es — P)~'B}-V' 1
{D(Es — P)-'B}~'{D(Es — P)~'M}r(s). (49 |

If r(t) is a vector-function of the form

(4.9)

=1\ = const for ¢ >0, (4.10) §

then it follows that for t—»e it is possible to write the following equation on the basis of (4.7) while taking account
of (2.9) for s =0:

Yg {DPB}-V{ED»?(0) + B'P'QPB}{DPB}-'y, =r{DPM)'{DPB)-"{DPB}-\{DPM}r, (4.1 |
where P is the matrix that is the reciprocal [3] of the matrix P; i.e.,

1900



—;i— == p‘l.

| P]
Equation (4.11) is a constraint on the choice of the matrix Q of the optimized functional for stipulated values
the error vector (yg) which is caused by the stipulated perturbation (4.10) in the steady-state mode.

Note that if the functional (2.3) has the form

o0
, , (4.12)
J=\ Qw+uwud,
[ ]

ollows that for astatic systems the condition (4.11) takes the form
Vs 'Qug, =r {DPM)'{DPB)~"(DPB}-'{DPM}r. (4.13)
the condition wij(0) > 1, Eq, (4.13) is similarly valid for the systems with a zero-order astatism.)
If M = B, it follows from (4.13) that
Y 'Qug =11 (4.14)
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