
ISSN 0005-1179, Automation and Remote Control, 2017, Vol. 78, No. 6, pp. 961–973. c© Pleiades Publishing, Ltd., 2017.
Original Russian Text c© A.G. Aleksandrov, 2017, published in Avtomatika i Telemekhanika, 2017, No. 6, pp. 3–17.

LINEAR SYSTEMS

Design of Controllers

by Indices of Precision and Speed.

II. Nonminimal-Phase Plants

A. G. Aleksandrov†

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia

Received January 14, 2016

Abstract—A method to design controllers of one-dimensional nonminimal-phase plants under unknown
bounded external perturbations was proposed. It is based on determining the parameters of the Bézout
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1. INTRODUCTION

One of the main problems of automatic control is represented by the design of controllers in
terms of the indices of precision, control time, and overshoot. The Bode plot is one of the basic
problems of automatic control [1, 2]. It is a heuristic semigraphical method which hardly yields
to computer-aided automation. In this connection, analytical methods of design in terms of these
indices are worked up.

One of the lines of research relies on the linear-quadratic optimization [3, 4]. Numerous publi-
cations are concerned with the design of PI and PID controllers. Low order of the plant equations
enables one to establish an explicit relation between the coefficients of such controllers and the
times of control and overshoot, robustness margins, and so on. Several thousands of relations de-
scribing such couplings can be found in [5]. Design of the controllers for the minimal-phase plants
satisfying the requirements on precision and speed under unknown bounded external perturbation
is proposed in [6]. It is based on the relation of the roots of the characteristic system polynomial
with these indices. If the controller polynomial is determined from the Bézout identity comprising
a polynomial with certain roots, then the desired requirements can be satisfied by setting these
roots.

A similar approach is used in the present paper to design the controller of a nonminimal-phase
plant. However, for such plants the above relation is much more complicated. Additionally, it is
common knowledge that for such plants no controller satisfying the requirements on precision and
speed needs to exist.

In this connection, it is necessary to find the maximum permissible values of these indices. The
maximum permissible precision can be established using [7, 8]. For example, in [7] this precision
was obtained under the monofrequency harmonic external perturbation with unknown frequency,
and in [8], for any bounded external perturbation.

† Deceased.
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962 ALEKSANDROV

2. FORMULATION OF THE PROBLEM

Consider an asymptotically stable control system obeying the equations

y(n) + dn−1y
(n−1) + . . . + d1ẏ + d0y

= kmu
(m) + . . .+ k1u̇+ k0u+ cpf

(p) + . . .+ c0f, m < n, p < n,
(2.1)

gncu
(nc) + . . .+ f1u̇+ g0u = rmcy

(mc) + . . .+ r1ẏ + r0y, nc � mc, (2.2)

where y(t) is the measured output of plant (2.1) which is the controlled variable, u(t) is the control
generated by the controller (2.2), f(t) is the unknown external perturbation which is bounded by
a certain number f∗ and represented by a polyharmonic function

f(t) =
N∑

i=1

fi sin (ωit+ ϕi) (2.3)

with unknown frequencies ωi and phases ϕi (i = 1, N ), its unknown amplitudes being such that

N∑

i=1

|fi| � f∗.

If f(t) is a sectionally continuous function, then (2.3) represents for N → ∞ its expansion in the
Fourier series.

Problem 1. For a certain and fully controllable plant (2.1), determine the controller (2.2) satis-
fying the requirements on precision

|y(t)| � y∗, t � treg, (2.4)

speed

treg � t∗reg, (2.5)

and margins of robustness

ra � r∗a, (2.6)

where y∗, t∗reg, and r∗a are the given numbers.

The radius of robustness margins ra is related with the phase (ϕm) and modulo (L) by

ϕm = 2arccos

√

1− r2a
4
, L = min

[
1 + ra,

1

1− ra

]
.

In particular, for ra = 0.75, ϕm = 42◦, L = 1.75. The radius of robustness margins can be estab-
lished experimentally without opening the system.

The desired precision and speed should satisfy the conditions

y∗ � y∗∗, t∗reg � t∗∗reg,

where the numbers y∗∗ and t∗∗reg are the permissible precision and speed. They are unknown, which
gives rise to the following problem.

Problem 2. Needed is to determine for the given plant the permissible values of precision and
speed.
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DESIGN OF CONTROLLERS BY INDICES OF PRECISION AND SPEED. II. 963

3. ESSENCE OF THE APPROACH

By Laplace transforming Eqs. (2.1) and (2.2) under the zero conditions, we put down

d(s)y = k(s)u+ c(s)f, (3.1)

g(s)u = r(s)y, (3.2)

d(s) =
n∑

i=0

dis
i, k(s) =

m∑

i=0

kis
i, g(s) =

nc∑

i=0

gis
i,

r(s) =
mc∑

i=0

ris
i, c(s) =

p∑

i=0

cis
i.

Represent the polynomial k(s) as

k(s) = k1(s)k2(s),

where k1(s) is a polynomial of degree m1 whose roots have negative real parts, and k2(s) is a
polynomial of degree m2 (m1 +m2 = m) whose roots have nonnegative real parts.

The plant (3.1) is nonminimal-phase if m2 �= 0 (m2 � m). The controller (3.2) is determined
from the Bézout identity

d(s)g(s) − k(s)r(s) = ψ(s), (3.3)

where ψ(s) is the modal polynomial with roots having negative real parts.

In the left side of (3.3) there is the characteristic polynomial of system (3.1), (3.2), and in the
right side, the desired characteristic polynomial. By comparing the coefficients at the identical
degrees s, we get a system of linear algebraic equations for determination of the coefficients of
the controller polynomials g(s) and r(s) providing the desired characteristic polynomial of system
(3.1), (3.2).

Take the following structure of the modal polynomial

ψ(s) = k1(s)ε(s)δk(s)δ(s), (3.4)

where δk(s) = k2(−s) and the realizability polynomial ε(s) and the basic polynomial δ(s) are given
by

ε(s) =
n−m∏

i=1

(
νi
sδ
s+ 1

)
, sδ = max [sδ,1, . . . , sδ,n] , (3.5)

δ(s) =
n∏

i=1

(s+ sδ,i) ,

where sδ,i, i = 1, n, and νi, i = 1, n −m, are the given positive numbers.

The desired polynomial

g(s) = k1(s)gε(s)gk(s)

has multipliers of the following degrees

deg gε(s) = deg ε(s), deg gk(s) = deg k2(s).

By reducing the Bézout identity (3.3) by the polynomial k1(s), represent it as

d(s)gε(s)gk(s)− k2(s)r(s) = ε(s)δk(s)δ(s). (3.6)
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964 ALEKSANDROV

Denote d̃(s) = d(s)gk(s), r̃ = k2(s)r(s), δ̃(s) = δk(s)δ(s) and represent this identity as

d̃(s)gε(s)− r̃(s) = δ̃(s)ε(s).

It is easy to see that this identity coincides to within the notation with the corresponding
identity [6]. Therefore, the following property is valid under a sufficiently small coefficients of the
polynomial ε(s)—under small νi, i = 1, n−m.

Property 1. The coefficients of the polynomials gε(s) and r̃(s) are represented as:

gε,i = εi + 01,i(ν), i = 0, n −m, rj = r̃j + 02,j(ν), j = 0, n +m2 − 1,

where 01,i(ν) and 02,j(ν) are the functions vanishing with the vector ν = [ν1, . . . , νn−m]:

lim
ν→0

01,i(ν) = 0, lim
ν→0

02,j(ν) = 0.

In connection with Property 1, we assume for simplicity in what follows that

gε(s) = ε(s). (3.7)

The essence of the approach to satisfying the requirements on the system is based on the relation
between the roots of the modal polynomial, the plant polynomial, and the denominator of the
controller transfer function with the indices of precision, speed, and robustness. Similar to the
relations described in [6], for c(s) = c0 and condition (3.7), these relations are given by

sup
0�ω<∞

|tyf (jω)| = sup
0�ω<∞

|gk(jω)| |c0|
|δk(jω)δ(jω)| �

y∗

f∗
, (3.8)

sδ,i �
β

t∗reg
, i = 1, n, β = 3, (3.9)

ra = inf
0�ω<∞

|δk(jω)δ(jω)|
|gk(jω)d(jω)| � r∗a. (3.10)

In the case of minimal-phase plant, the polynomials gk(s) and δk(s) coincide in inequalities (3.8)
and (3.10). Therefore, for satisfaction of these inequalities the roots of the basic polynomial are
defined in [6] as

sδ,i = |sd,i| qt, i = 1, n, qt > 1, (3.11)
n∏

i=1

sδ,i �
f∗

y∗
. (3.12)

For the nonminimal-phase plant, the polynomial gk(s) depends intricately on the roots of the
polynomials δk(s), δ(s), and d(s); and now the problem lies in determining the roots of the poly-
nomials δk(s) and δ(s) so that the inequalities (3.8)–(3.10) be satisfied.

4. SYSTEM PERFORMANCE INDICES VS. THE ROOTS OF THE POLYNOMIAL k2(s)

4.1. Large Roots

Order the modules of the plant roots and those of the basic polynomial:

|sd,1| � |sd,2| � . . . � |sd,n| , sδ,1 � sδ,2 � . . . � sδ,n, s1 � s2 � . . . � sm2 ,

where si, i = 1,m2, are the roots of the polynomial k2(s).
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For simplicity, we confine our consideration to the real roots of the polynomial k2(s), examine
the polynomial gk(s) under larger roots of the polynomial k2(s) as compared with the roots of the
polynomial d(s):

si > |sd,n| θd, i = 1,m2, (4.1)

where θd is sufficiently larger positive number.

Select the roots of the polynomial δ(s) so that a similar condition be satisfied

si > sδ,nθδ, i = 1,m2. (4.2)

Statement 1. If inequalities (4.1) are satisfied for the control plant and the modules of the roots
of the modal polynomial are selected from the condition (4.2), then for sufficiently large values of
the numbers θd and θδ the polynomial of the controller

gk(s) = δk(s) + 0(s, θd, θδ), (4.3)

where the polynomial 0(s, θd, θδ) includes coefficients vanishing with growth of θd and θδ,

lim
θd,θδ→∞

0(s, θd, θδ) = 0.

Proof. Consider the relations

δ(si)

d(si)
=

n∏

p=1

(si + sδ,p)

n∏

p=1

(si + sd,p)

=

n∏

p=1

(
1 +

sδ,p
si

) n∏

i=1

sni

n∏

p=1

(
1 +

sd,p
si

) n∏

i=1

sni

, i = 1,m2.

From inequalities (4.1) and (4.2), obtained are the relations

sδ,p
si

<
1

θδ
,

|sd,p|
si

<
1

θd
, p = 1, n, i = 1,m2

from which it follows that

δ(si)

d(si)
= 1 + 0i(θd, θδ), i = 1,m2, (4.4)

where the functions 0i(θd, θδ) feature limθd,θδ→∞ 0i(θd, θδ) = 0, i = 1,m2.

Taking into consideration (3.7) and (4.4) and disregarding the vanishing functions, set down the
identity (3.6) as

m2∑

j=0

(si)
j gk,j = δk(si), i = 1,m2

from which Eq. (4.3) follows.

Consequently, under larger roots of the polynomial k2(s) closeness arises to the case of minimal-
phase plant, and determination of the roots of the basic polynomial with the use of (3.9), (3.11)
and (3.12) satisfies the requirements (2.4)–(2.6).
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4.2. Smaller Roots

Consider the polynomial g(s) under smaller roots of the polynomial k2(s) as compared with the
roots d(s):

si �
|sd,1|
θ d

, i = 1,m2, (4.5)

where θ d is a sufficiently large positive number.

The roots of the basic polynomial are taken as follows:

si �
sδ,1
θ δ
, i = 1,m2, (4.6)

where θ δ is a sufficiently large positive number.

Statement 2. If the roots of the polynomial k2(s) satisfy the inequalities (4.5) and (4.6), then
for sufficiently large numbers θ d and θ δ the controller polynomial is given by

gk(s) =
δ0
d0
δk(s) + 0 (s, θ d, θ δ) , (4.7)

where the polynomial 0 (s, θ d, θ δ) includes the coefficients vanishing with growing θ d and θ δ.

Proof. Consider the relations

δ(si)

d(si)
=

n∏

p=1

(si+sδ,p)

n∏

p=1

(si+sd,p)

=

n∏

p=1

sδ,p

(
1+

si
sδ,p

)

n∏

p=1

sd,p

(
1+

si
sd,p

)=
δ0
d0

[1+0 i ( θ d, θ δ)] , i=1,m2,

where 0 i ( θ d, θ δ) is a function vanishing with growing numbers θ d and θ δ:

These relations follow from the inequalities

si
sd,p

<
1

θ d
,

si
sδ,p

<
1

θ δ
, i = 1,m2, p = 1, n.

From the identity (3.6) we get that

m2∑

j=0

gk,js
j
i =

δ0
d0

m2∑

j=0

δjs
j
i , i = 1,m2. (4.8)

Equation (4.7) follows from equalities (4.8).

The transfer function in (3.8) relating the system output with the external perturbation is now
put down as

tyf (s) =
c0δ0
δ(s)d0

.

This function for s = 0 (where it defines the system output under stepwise external perturbation)
goes over

tyf (0) =
c0
d0
.

This expression implies that the controller does not enhance precision of the asymptotically
stable plants.
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4.3. Design Procedure

An iterative procedure of design is proposed. Its first operations determine the permissible
values of precision and speed.

Procedure.

Operation 1. Determine the roots of the basic polynomial from the desired speed

sδ,i =

(
β

t∗reg qt

)
αi, i = 1, n, qt > 1, (4.9)

where α is a positive number introduced to make aliquant the roots of the basic polynomial.

Along with the definition δk(s) = k2(−s), it is sometimes convenient to determine the roots sδk,i,
i = 1,m, of the polynomial δk(s), by selecting a companion to (4.9)

sδk,i =

(
β

t∗reg qt

)
αi, i = 1,m2, qt > 1.

If sδ,i < |sd,i|, i = 1, n1, n1 < n, then we assume that

sδ,i = sd,i, i = 1, n1.

Operation 2. Find the polynomial gk(s) by solving identity (3.6) under ε(s) = 1, and determine
the radius of the robustness margin

ra = inf
0�ω<∞

|δk(jω) δ(jω)|
|gk(jω) d(jω)| .

If the robustness condition ra > r∗a is satisfied, then go to Operation 3. Otherwise, return to
Operation 1 and increase the number qt until the robustness conditions are satisfied for qt = q∗t .
Then, the permissible speed

t∗∗reg = t∗regqt∗∗ .

Operation 3. Check the requirement on precision (3.8). If it is not satisfied, then generate the
roots of the basic polynomial

sδ,i = |sd,i| qt∗∗ qy, i = 1, n, qy > 1.

By solving the Bézout identity ε(s) = 1 determine the polynomial gk(s), verify satisfaction of
requirement (3.8) and increase the number qy until this identity is satisfied at retention of the
robustness margins.

Operation 4. Solve the Bézout identity (3.3) with the modal polynomial (3.4) and generate the
desired controller

k1(s)gk(s)gε(s)u = r(s)y.

5. INERTIAL CONTROLLER

5.1. Structure of the Bézout Identity for an Asymptotically Stable Plant

If plant (3.1) is asymptotically stable, then precision can be increased within the range of low
frequencies of the external perturbation, and the system robustness retained using the inertial
controller proposed in [3].
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For that, we generate a “plant” by replacing in it the polynomial d(s) by the polynomial d(s)ρ(s),
where the polynomial ρ(s) comprises a sufficiently large time constant which after design is trans-
ferred to the controller. We assume for simplicity that

m2 = m (k2(s) = k(s)).

The Bézout identity (3.6) with the basic polynomial δ(s) = d(s) is now given by

d(s)ρ(s)gε(s)gk(s)− k(s)r(s) = ε(s)δk(s)δρ(s)d(s), (5.1)

where

ρ(s) =
n2∑

i=0

ρis
i, δρ(s) =

n2∑

i=0

δρ,is
i, n2 > m, δk(s) = k(−s).

Assume the following structures of these polynomials

ρ(s) = k(−s)(ρ1s+ 1), ρ1 > 0, (5.2)

δρ(s) = ρ(s) + μk(s), μ > 0. (5.3)

The numbers ρ1 and μ are then determined from the conditions for system robustness and
precision.

The degree of the desired polynomial r(s) is given by

deg [r(s)] = n+ n2 − 1.

Classify the introduced polynomial ρ with the controller. Then, it becomes

ρ(s)gε(s)gk(s)u = r(s)y, (5.4)

where the degree of polynomial gε(s) is given by

deg [gε(s)] = deg [ε(s)] = n−m− 1.

5.2. Properties of the Solutions of the Bézout Identity for Plants under m = n− 1

There is no difficulty in seeing that the controller (5.4) is realizable if the realizability polynomial
ε(s) = 1 and, consequently, gε(s) = 1, provided that the plant has degree m = n− 1.

The identity (5.1) takes on the form

d(s)ρ(s)gk(s)− k(s)r(s) = δk(s)δρ(s)d(s). (5.5)

Property 2. The desired controller polynomial gk(s) is given by

gk(s) = δk(s). (5.6)

Indeed, we establish from the identity (5.5) for s = si that

gk(si) =
δk(si)δρ(si)

ρ(si)
, i = 1,m. (5.7)

It follows from (5.3) that

δρ(si) = ρ(si), i = 1,m.

Then, from equalities (5.7) we get the relations

gk(si) = δk(si), i = 1,m

providing property (5.6).
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5.3. Determination of the Numbers μ and ρ1

First, determine the numbers μ and ρ1 from the condition for negativeness of the real parts of
the roots of the polynomial δρ(s).

Order the time constants of the polynomial

k(s) = k0

m∏

i=1

(−Tis+ 1) , Ti > 0, i = 1,m, k0 > 0,

as

T1 > T2 > . . . > Tm,

and introduce the parameter θ taking on values θ = 5, 10.

If T2, . . . , Tm are sufficiently small as compared with T1, then θ = 1.

Statement 3. The roots of the polynomial δρ(s) have negative real parts if

μ =

√
ρ21 + T 2

1 θ
2

T1θ
. (5.8)

Proof. The proof uses the Nyquist plot. In this connection, we consider the amplitude–fre-
quency a(ω) and phase–frequency ϕ(ω) characteristics corresponding to the transfer function wρ(s)
obeying the relation

δρ(s)

ρ(s)
= 1 + wρ(s),

where

wρ(s) = μ
k(s)

k(−s)(ρ1s+ 1)

with regard for (5.2), (5.3).

These characteristics are given by

a(ω) =
μ√

ρ21ω
2 + 1

, 0 � ω <∞, (5.9)

ϕ(ω) = −arctan ρ1ω − 2
m∑

i=1

arctan Tiω, 0 � ω <∞.

The system’s crossover frequency is determined from (5.9) as

ω2
cr =

μ2 − 1

ρ21
. (5.10)

Determine the numbers μ and ρ1 so that the system crossover frequency be essentially to the
left of the frequency corresponding to the greatest time constant of the polynomial k(s):

ωcr =
1

T1θ
.

By using (5.10) one can readily see that this is provided by relation (5.8).
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Now, determine the number ρ1 for which requirement (2.5) on precision is satisfied under suffi-
ciently small frequencies of external perturbation and robustness.

In this connection, we put down the system transfer functions and the radius of robustness
margins as

tyf (s) =
ρ(s)

δρ(s)d(s)
, ra = inf

0�ω<∞
|δρ(jω)|
|ρ(jω)| . (5.11)

Under a staircase external perturbation (fstep = f∗ for t � t0 and fstep = 0 for t < t0) the system
output is defined by

|tyf (0)| = |c0| |k0|
|d0| |k0 + k0μ| =

|c0|
|d0| |1 + μ| .

Using (5.8), we put down the condition for precision

|c0|T1θ
|d0|

∣∣∣∣T1θ +
√
ρ21 + T 2

1 θ
2

∣∣∣∣
� f∗

y∗
, (5.12)

from which the parameter ρ1 is determined, and then from (5.8) determine the number μ and verify
on the basis of (5.11) the robustness condition ra � r∗a.

5.4. Plants for m < n− 1

If the degree of the polynomial k(s) of plant (3.1) is smaller than n− 1, then generate the
realizability polynomial (3.5) of degree n−m− 1 and solve the Bézout identity (5.1) using the
values of μ and ρ1 as determined above.

6. TRACKING SYSTEM

The tracking system obeys the equations

d(s)y = k(s)u+ c(s)f,

d(s)u = r(s)y + rcr(s)yr, (6.1)

where yr(t) is the measured reference action which is a sectionally constant function with sufficiently
large constancy intervals.

The problem lies in determining the controller polynomials (6.1) under which satisfied are the
requirements on precision

|e(t)| � e∗, t � treg,

where e(t) are the deviations of the plant output from the reference action

e(t) = y(t)− yr(t),

e∗ is the given number (permissible tracking error), as well as speed (2.5) and robustness mar-
gin (2.6).

The plant output is related with the external perturbation for c(s) = c0 and reference action in
the form of

y =
g(s)c0

d(s)g(s) − k(s)r(s)
f +

k(s)rcr(s)

d(s)g(s)− k(s)r(s)
yr.
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Further, we assume that the polynomials g(s) and r(s) of controller (6.1) were obtained by the
procedure (see p. 967). Then, we obtain under the condition (3.7) that

y =
gk(s)c0
δk(s)δ(s)

f +
k2(s)rcr(s)

δk(s)δ(s)
yr. (6.2)

Represent the basic polynomial as

δ(s) = δ1(s)δ2(s),

where

δ1(s) =
n1∏

i=1

(s+ sδ,i) , δ2(s) =
n∏

i=n1+1

(s+ sδ,i) , n1 � n,

and denote

a1 =
n1∏

i=1

sδ,i.

For δk(s) = k2(−s) take the controller polynomial rcr(s) as

rcr(s) = a1δ2(s)

and represent (6.2) as

y = yf + yy,

where

yf =
gk(s)c0

k2(−s)δ(s) f, yy =
k2(s)a1

k2(−s)δ1(s) yr.

It follows from the above relations that

|yf(t)| � y∗, yy(t) = yr for t � treg.

7. EXAMPLE

7.1. Use of the Procedure

Consider the plant obeying the equation

...
y + 6.25ÿ + 26.2ẏ + 5y = −2u̇+ 5u+ 5f,

where f(t) is a polyharmonic function (2.3) with the constraint f∗ = 1.

It is desired to determine a controller providing precision

|y(t)| � 0.1, t � treg,

speed

treg < 0.3 (7.1)

and robustness margins in phase and modulo.
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To design the controller, we first use the procedure.

According to Operation 1 of this procedure, we generate the roots of the basic polynomial and
the polynomial δk(s):

sδ,1 = 8.46, sδ,2 = 9.3, sδ,3 = 10.23, sδk,1 = 10

on the basis of requirements on speed (7.1) and robustness margins (the roots of the plant polyno-
mial: |sd,1| = 0.2, |sd,2| = 5, |sd,3| = 5.)

To execute Operation 2, we generate the Bézout identity

(s3 + 6.25s2 + 26.2s + 5)(gk1s+ gk0)− (−2s+ 5)(r2s
2 + r1s+ r0)

= (s+ 10)(s + 8.46)(s + 9.3)(s + 10.23),

solve it and obtain the polynomial gk(s) = (s+ 162.5). Determine the radius of the robustness
margins

ra = 0.18,

which does not provide system robustness. In this connection, the number qt is increased, the
operation is repeated anew, and the new radius of robustness margins is determined. Four iterations
provide the radius of robustness margins ra = 0.69. At that, the permissible control time treg = 5 c.

To realize the controller, the realizability polynomial ε(s) = 0.179s+1 is added to the right side.

In this case, solution of the Bézout identity provides a controller with the transfer function

wc(s) = − 1.749s2 + 11.15s + 67.5

0.179s2 + 3.185s + 20.12
.

According to Operation 4 of the procedure, we find

sup
0�ω<∞

|tyf (jω)| � 0.77.

This permissible precision differs from the desired one almost by the factor of ten.

7.2. Inertial Controller

Generate a modal polynomial of identity (5.1)

ψ(s) = (ε1s+1)(2s+5) [(2s+3)(ρ1s+1)+μ(−2s+5)] (s3+6.25s2 +26.2s+5).

Using inequality (5.12), determine the number ρ1. Find from (5.8) the parameter μ

ρ1 = 20, μ = 10

and take ε1 = 0.1.

By solving the Bézout identity (5.1), obtain a controller with the transfer function

Wc(s) = − 3.94s4 + 34.3s3 + 64s2 + 278s + 49.2

4.549s4 + 36.6s3 + 109s2 + 119s + 5.7

providing under the staircase external perturbation the desired precision

|y(t)| � 0.1, t � treg,

control time

treg = 20 s,

and radius of the robustness margins

ra = 0.7.
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