АДАПТИВНОЕ ЧАСТОТНО-МОДАЛЬНОЕ УПРАВЛЕНИЕ

А.Г. Александров

Институт проблем управления им. В.А. Трапезникова РАН Россия, 117997, Москва, Профсоюзная ул., 65 E-mail: alex7@ipu.ru

Д.В. Шатов

Институт проблем управления им. В.А. Трапезникова РАН Россия, 117997, Москва, Профсоюзная ул., 65 E-mail: dvshatov@gmail.com

Ключевые слова: адаптивное управление, идентификация, модальное управление

Аннотация: Предлагается метод адаптивного управления одномерным линейным объектом при неизвестных, ограниченных внешних возмущениях. Коэффициенты объекта неизвестны и меняются в некоторые моменты времени. Процесс адаптации состоит из двух процедур: идентификации и синтеза. Процедура идентификации основана на методе конечно-частотной идентификации объекта управления и замкнутой системы. Процедура синтеза использует метод модального управления. Используется алгоритм выбора модального полинома, обеспечивающий заданную точность и запасы устойчивости системы. Приводится пример.

1. Введение

Существует два основных направления в адаптивном управлении. Они различаются предположениями о внешнем возмущении.

В первом направлении [7] предполагается, что внешнее возмущение отсутствует [5] или описывается моделью белого шума [6]. Оно использует адаптивное управление с эталонной моделью и метод наименьших квадратов.

Второе направление развивается с начала 1980-ых годов. Здесь внешнее возмущение — неизвестная, ограниченная функция времени. Оно включает в себя различные способы адаптивного управления: метод рекуррентных целевых неравенств [10], алгоритм оценивания с зоной нечувствительности [11], частотное адаптивное управление [2,3] и другие.

Настоящая работа развивает метод частотного адаптивного управления. Предлагаемый метод синтеза регулятора основан на модальном управлении.

2. Постановка задачи

Рассмотрим систему, описываемую уравнениями

(1)
$$d_n^{[\nu]} y^{(n)} + d_{n-1}^{[\nu]} y^{(n-1)} + \ldots + d_1^{[\nu]} \dot{y} + d_0^{[\nu]} y = k_m^{[\nu]} u^{(m)} + \\ \ldots + k_1^{[\nu]} \dot{u} + k_0^{[\nu]} u + f, \quad m < n;$$

(2)
$$g_{n_c}^{[\nu]} u^{(n_c)} + \dots + g_1^{[\nu]} \dot{u} + g_0^{[\nu]} u = r_{m_c}^{[\nu]} (y^{(m_c)} + v^{(m_c)}) + \dots + r_1^{[\nu]} (\dot{y} + \dot{v}) + r_0^{[\nu]} (y + v), \quad m_c \leq n_c,$$

где y(t) – измеряемый выход объекта (1), являющийся регулируемой переменной, u(t) – управление, формируемое регулятором (2), v(t) – испытательный сигнал, используемый при адаптации, f(t) – внешнее возмущение, которое может быть представлено полигармонической функцией

(3)
$$f(t) = \sum_{i=0}^{\infty} f_i \sin(\omega_i^f t + \phi_i^f),$$

где частоты ω_i^f и фаз
ы ϕ_i^f – неизвестны, а неизвестные амплитуды
 f_i удовлетворяют условию

$$\sum_{i=0}^{\infty} |f_i| \leqslant f^*,$$

в котором f^* – известное число.

Коэффициенты $d_i^{[\nu]}, k_j^{[\nu]}$ $(i = \overline{0, n}, j = \overline{0, m})$ объекта неизвестные числа, которые изменяются в моменты времени t_i (i = 1, 2, ..., N - 1) и в дальнейшем сохраняют свои значения на интервалах времени

(4)
$$I_0 = [t_0, t_1), \ I_1 = [t_1, t_2), \ \dots, I_{N-1} = [t_{N-1}, t_N],$$

где t_0 – начальный момент времени, момент времени t_N – момент окончания работы. Моменты времени, когда происходит изменение значений коэффициентов объекта, известны, либо находятся в процессе адаптации. Интервалы $I_0, I_1, \ldots, I_{N-1}$ будем называть интервалами стационарности объекта. Верхние индексы [ν] в записи коэффициентов объекта (1) принимают соответственно значения номеров интервалов стационарности объекта 0, 1, ..., N - 1.

стационарности объекта $0, 1, \ldots, N-1$. Коэффициенты $g_i^{[\nu]}, r_j^{[\nu]}$ $(i = \overline{0, n_c}, j = \overline{0, m_c})$ регулятора находятся в процессе адаптации. Коэффициенты регулятора остаются постоянными на интервалах $I_{c0} = [t_0, t_1 + t_{1,a}), I_{c1} = [t_1 + t_{1,a}, t_2 + t_{2,a}),$

 $\dots, I_{c(N-1)} = [t_{N-1} + t_{(N-1),a}, t_N]$, где $t_{i,a}$ $(i = \overline{1, N-1})$ – моменты окончания адаптации на *i*-ом интервале стационарности объекта. Интервалы $I_{c0}, I_{c1}, \dots, I_{c(N-1)}$ будем называть интервалами стационарности регулятора.

Интервалы времени $I_{a1} = [t_1, t_{1,a}], \ldots, I_{aN-1} = [t_{(N-1)}, t_{(N-1),a}]$ будем называть интервалами адаптации, а интервалы $I_{n1} = [t_1 + t_{1a} + \eta_1, t_2], I_{n2} = [t_2 + t_{2a} + \eta_2, t_3], \ldots, I_{nN} = [t_{N-1} + t_{(N-1)a} + \eta_{N-1}, t_N]$ называются интервалами нормальной работы системы, η_i $(i = \overline{1, N-1})$ – длительности затухания переходных процессов, вызванные изменением коэффициентов регулятора. Задача 1. состоит в том, чтобы для каждого интервала нормальной работы объекта, найти коэффициенты $g_i^{[\nu]}, r_j^{[\nu]}$ $(i = \overline{0, n_c}, j = \overline{0, m_c})$ регулятора (2) такие, что система (1),(2) удовлетворяла требованиям к точности

(5)
$$|y(t)| \leqslant y^*, t \in I_{ni}, \ i = \overline{0, N-1};$$

где у* – заданное число.

Пусть выполняются следующие предположения:

а) Объект (1) полностью управляем.

б) На интервале стационарности I_0 коэффициенты объекта известны.

в) При известных коэффициентах объекта на каждом интервале (4) существуют $g_i^{[\nu]}, r_j^{[\nu]}$ ($i = \overline{0, n_c}, j = \overline{0, m_c}$), такие, что требования (5) выполняются.

Чтобы пояснить это предположение, рассмотрим полином $k(s) = \sum_{i=1}^{m} k_i s^i$, где

s – символ преобразования по Лапласу при нулевых начальных условиях. Если все корни $s_{k,i}$ $(i = \overline{1,m})$ полинома k(s) имеют отрицательные вещественные части (*минимально-фазовый объект*), тогда это предположение выполнимо. Иначе максимально достижимая точность ограничена (величина y^*).

г) Система обладает смежной устойчивостью. Это означает, что изменение коэффициентов объекта (1) в моменты времени t_i , (i = 1, 2, ..., N - 1) не приводит к потере устойчивости системы (1),(2) на следующем интервале адаптации. Для выполнения этого предположения система (1), (2) должна обладать запасами устойчивости по фазе и модулю.

д) Длительность интервалов адаптации достаточна для ее осуществления, т. е. $t_{i,a} - t_i > t_{i+1} - t_i, \ (i = \overline{1, N-1}).$

Рис. 1. Частотная адаптивная система управления

Для решения описанной выше задачи применим частотную адаптацию [2]. На рис. 1 приведена схема частотной адаптивной системы управления.

Решение задачи адаптации на каждом интервале стационарности объекта (4) состоит из двух процедур: процедуры идентификации [1] коэффициентов объекта (на интервале адаптации I_{ai} $(i = \overline{1, N})$), и затем процедуры синтеза регулятора на основе модального управления [9]. Рассмотрим каждую из этих процедур.

3. Процедура идентификации

Идентификация выполняется на каждом интервале стационарности (4), поэтому для простоты во всех формулах опустим индексы, обозначающие номера интервалов стационарности и адаптации.

Опишем назначение блоков системы адаптивного управления, изображенной на рис. 1, выполняющих идентификацию объекта (1).

Генератор испытательного сигнала формирует полигармонический сигнал вида:

(6)
$$v(t) = \sum_{i=1}^{n} v_i \sin \omega_i t_i$$

где $v_i, \omega_i, (i = \overline{1, n})$ – амплитуды и частоты гармоник испытательного сигнала.

Испытательные частоты ω_i выбираем равными корням полинома [4], составленного из оценок коэффициентов \hat{d}_i $(i = \overline{0, n})$ объекта на *предыдущем* интервале стационарности:

$$\omega_i = s_{d,i}, \ (i = \overline{1, n}),$$

где $s_{d,i}, (i = \overline{1, n})$ – корни полинома $\hat{d}(s) = \sum_{i=0}^{n} \hat{d}_{i} s^{i}$.

Амплитуды испытат
ательных гармоник v_i $(i = \overline{1, n})$ определяются следующим образом.

Представим выход объекта как

$$y(t) = y_0(t) + y_f(t) + y_v(t),$$

где $y_0(t)$ – компонента, зависящая от начальных условий, $y_f(t)$ – составляющая выхода, вызванная внешним возмущением, $y_v(t)$ – компонента, возбужденная испытательным сигналом (6).

Амплитуды испытательного сигнала определяются из условия

$$|y_v(t)| \leqslant 0.5 |y_f(t)|.$$

Достаточным условием выполнения этого неравенства является условие

(7)
$$\sum_{i=1}^{n} |t_{yv}(j\omega_i)| \rho_i \leqslant 0.5y^*,$$

где $t_{yv}(s)$ – передаточная функция системы (1),(2) на *предыдущем* интервале стационарности объекта, связывающая выход объекта с испытательным сигналом.

Числа

(8)
$$\alpha_k = \operatorname{Re} W(j\omega_k), \quad \beta_k = \operatorname{Im} W(j\omega_k), \ (k = \overline{1, n}),$$

где $W(j\omega) = \frac{k(j\omega)}{d(j\omega)}$, будем называть *частотными параметрами* объекта (1).

 $\varPhi u n b mp$ $\varPhi y p b e$ определяет оценки частотных параметров объекта, используя сигналы u(t) и y(t):

(9)
$$\hat{\alpha}_{i} = \frac{\hat{\alpha}_{ui}\hat{\alpha}_{yi} + \hat{\beta}_{ui}\hat{\beta}_{yi}}{\hat{\alpha}_{ui}^{2} + \hat{\beta}_{ui}^{2}}, \quad \hat{\beta}_{i} = \frac{\hat{\alpha}_{ui}\hat{\beta}_{yi} - \hat{\alpha}_{yi}\hat{\beta}_{ui}}{\hat{\alpha}_{ui}^{2} + \hat{\beta}_{ui}^{2}}, \quad (i = \overline{1, n}),$$

где

(10)

$$\hat{\alpha}_{ui} = \frac{2}{v_i T} \int_{t_j}^{t_{j,a}} u(t) \sin(\omega_i t) dt, \quad \hat{\beta}_{ui} = \frac{2}{v_i T} \int_{t_j}^{t_{j,a}} u(t) \cos(\omega_i t) dt, \\
\hat{\alpha}_{yi} = \frac{2}{v_i T} \int_{t_j}^{t_{j,a}} y(t) \sin(\omega_i t) dt, \quad \hat{\beta}_{yi} = \frac{2}{v_i T} \int_{t_j}^{t_{j,a}} y(t) \cos(\omega_i t) dt, \\
(i = \overline{1, n}, j = \overline{1, N}),$$

где T — длительность текущего интервала адаптации I_a . Способ ее определения описывается ниже.

Частотные параметры (8) связаны с передаточной функцией объекта следующим образом:

(11)
$$W(j\omega_p) = \alpha_p + j\beta_p, \quad (p = \overline{1, n}).$$

Идентификатор решает частотную систему уравнений, полученную из (11). Коэффициентами системы являются оценки частотных параметров объекта (9)

(12)
$$\sum_{i=0}^{m} (j\omega_p)^i \hat{k}_i - (\hat{\alpha}_p + j\hat{\beta}_p) \sum_{i=1}^{n} (j\omega_p)^i \hat{d}_i = \hat{\alpha}_p + j\hat{\beta}_p, \ (p = \overline{1, n}).$$

Решение системы (12) дает оценки коэффициентов полиномов \hat{d}_i $(i = \overline{0, n})$ и \hat{k}_j $(j = \overline{0, m})$ [1].

4. Процедура модального синтеза

Рассмотрим систему (1),(2) на одном интервале стационарности (в дальнейшем для простоты обозначений верхние индексы опущены) в течение, которого коэффициенты объекта постоянны.

$$d(s)y = k(s)u + f,$$

(13) g(s)u = r(s)y,

где
$$d(s) = \sum_{i=0}^{n} d_i s^i$$
, $k(s) = \sum_{i=0}^{m} k_i s^i$, $g(s) = \sum_{i=0}^{n_c} g_i s^i$, $r(s) = \sum_{i=0}^{m_c} r_i s^i$.

Пусть коэффициенты полиномов d(s) и k(s) найдены в процессе идентификации. Коэффициенты полиномов регулятора (13) находятся из тождества Безу

(14)
$$d(s)g(s) - k(s)r(s) = \psi(s),$$

где $\psi(s) = \sum_{i=0}^{2n-1} \psi_i s^i$ – модальный полином, степени 2n-1. Корни полинома $\psi(s)$ имеют отрицательные вещественные части.

Полином $\psi(s)$ имеет структуру

$$\psi(s) = \varepsilon(s)\delta_k(s)\delta(s),$$

где полином $\delta(s)$ – *базовый полином* степени *n*. Вещественные корни полинома $\delta(s)$ обозначим как $(-s_{\delta,i})$ $(i = \overline{1, n})$, тогда сам полином имеет вид:

$$\delta(s) = d_n \prod_{i=1}^n (s + s_{\delta,i}),$$

где d_n – коэффициент полинома d(s) объекта при старшей степени s.

Полином $\varepsilon(s)$ – полином реализуемости степени n - m - 1, необходимый для реализуемости регулятора (условие реализуемости $\deg g(s) \ge \deg r(s)$). Полином $\varepsilon(s)$ формируется следующим образом

$$\varepsilon(s) = \prod_{i=1}^{n-m-1} \left(\frac{\mu_i}{s_{\delta}} + 1\right),$$

где $s_{\delta} = \max[s_{\delta,1}, \ldots, s_{\delta,n}], \mu_i \ (i = \overline{1, n - m})$ – достаточно малые, различные положительные числа.

При формировании полинома $\delta_k(s)$ возможны два случая.

Если у полинома k(s) все корни имеют отрицательные вещественные части, то $\delta_k(s) = k(s)$. В этом случае в требовании (5) к точности системы можно обеспечить любое значение y^* .

Если полином k(s) имеет положительные корни (для простоты предположим, что все корни k(s) имеют положительные вещественные части), то $\delta_k(s) = k(-s)$. В этом случае существует предельно-достижимая точность системы $y_{\pi p}$ (для случая m = 1, $y_{\pi p} = \frac{1}{|d(s_1)|}$). Требования к точности системы должны это учитывать ($y^* \ge y_{\pi p}$).

Утверждение 1. Если объект (1) – минимально-фазовый и модули корней базового полинома $\delta(s)$ удовлетворяют следующим соотношениям

$$\prod_{i=1}^n s_{\delta,i} \geqslant \frac{f^*}{y^*},$$

(15)
$$s_{\delta,i} \ge |s_{d,i}|, \quad i = \overline{1,n},$$

то регулятор (2) обеспечивает требуемую точность (5) системы и запасы устойчивости по модулю и фазе.

Доказательство утверждения 1. Передаточная функция системы (1), (2) имеет вид

(16)
$$t_{yf}(s) = \frac{g(s)}{d(s)g(s) - k(s)r(s)}.$$

Требования к точности системы (5) выполняются, если

$$\left\|t_{yf}(s)\right\|_{\infty} \leqslant \frac{y^*}{f^*},$$

где $(\|t_{yf}(s)\|_{\infty} = \sup_{0 \le \omega < \infty} |t_{yf}(j\omega)|).$

На самом деле, выход системы при действии внешнего возмущения при $t \to \infty$ равен

$$y(t) = \sum_{i=0}^{\infty} a\left(\omega_i^f\right) \sin\left(\omega_i^f t + \psi\left(\omega_i^f\right)\right),$$

где $a\left(\omega_{i}^{f}\right) = \left|t_{yf}\left(\omega_{i}^{f}\right)\right| f_{i}.$ Тогда

$$|y(t)| \leqslant \sum_{i=0}^{\infty} \left| a\left(\omega_i^f\right) \right| \leqslant \sum_{i=0}^{\infty} \left| t_{yf}\left(j\omega_i^f\right) \right| |f_i| \leqslant \left\| t_{yf}(s) \right\|_{\infty} \sum_{i=0}^{\infty} |f_i| = \left\| t_{yf}(s) \right\|_{\infty} f^*.$$

Полином g(s) имеет следующую структуру

(17)
$$g(s) = g_{\varepsilon}(s)k(s).$$

Разделив тождество (14) на полином k(s), получим следующее тождество

(18)
$$d(s)g(s) - r(s) = \varepsilon(s)\delta(s),$$

где индекс ε у полинома $g_{\varepsilon}(s)$ опущен.

Известно, что если параметры $\mu_i(i = \overline{1, n - m - 1})$ полинома реализуемости существенно малы, то решение тождества (18) имеет следующий вид

(19)
$$g(s) = \varepsilon(s) + o(s, \mu_i),$$

где $o(s, \mu_i)$ — полином, такой что $\lim_{\mu_i \to 0} o(s, \mu_i) = 0.$

Принимая во внимание тождество Безу и выражения (17), (19), передаточную функцию (16) можно переписать как

$$t_{yf}(s) = \frac{1}{\delta(s)}.$$

Корни полинома $\delta(s)$ вещественные и поэтому

$$\sup_{0 \leqslant \omega < \infty} |t_{yf}(j\omega)| \leqslant \frac{1}{d_n \prod_{i=1}^n s_{\delta,i}}.$$

Неравенство (15) обеспечивает систему запасами устойчивости. Очевидно, что возвратная разность системы имеет следующий вид:

$$\mathbf{v}(s) = 1 - \frac{k(s)r(s)}{d(s)g(s)} = \frac{\delta(s)}{d(s)},$$

где, в частности, для вещественных корней полинома d(s), получаем

$$|\mathbf{v}(j\omega)|^2 = \frac{\prod_{i=0}^n \left(\omega^2 + s_{\delta,i}^2\right)}{\prod_{i=0}^n \left(\omega^2 + s_{d,i}^2\right)} \ge 1, \quad 0 \le \omega < \infty.$$

Если выполняется это неравенство, то система обладает запасами по фазе $\geq 60^\circ$ и запасами по модулю $\geq 2.$

Решение тождества (14) получим, составив систему линейных алгебраических уравнений, сравнивая коэффициенты при одинаковых степенях *s* в правой и левой части тождества.

(20)
$$\sum_{i=0}^{n} d_{i}g_{\alpha-1} - \sum_{l=0}^{m} k_{l}r_{\alpha-l} = \psi_{\alpha}, \ (\alpha = \overline{0, 2n-1}).$$

Решение системы (20) существует и единственное, если степени полиномов g(s) и r(s) удовлетворяют неравенствам $n_c \ge n-1$ и $m_c \ge n-1$. Описанный метод выбора полинома $\psi(s)$ обеспечивает выполнение этого требования.

5. Алгоритм адаптации

На начальном интервале стационарности I_0 коэффициенты объекта известны и, используя процедуру синтеза 4. для него рассчитывается регулятор. Объект замыкается этим регулятором.

Необходимость в адаптации регулятора возникает на каждом из следующих интервалов стационарности.

Алгоритм 1. Алгоритм адаптации состоит из следующих этапов:

- 1. После смены коэффициентов объекта начинается его идентификация на основе процедуры 3..
- 2. По найденным оценкам коэффициентов объекта рассчитывается регулятор согласно проедуре 4. и объект замыкается этим регулятором.
- 3. После смены регулятора и завершения переходного процесса начинается интервал нормальной работы объекта, который продолжается до следующей смены коэффициентов объекта.

6. Условия сходимости алгоритма. Длительность адаптации

Для сходимости алгоритма адаптации необходимо, чтобы внешнее возмущение (3) обладало свойством ФФ-фильтруемости [3]. Это означает, что внешнее возмущение не содержит в своем спектре частот ω_i $(i = \overline{1, n})$ испытательного сигнала (6):

(21)
$$\omega_k^f \neq \omega_i, \ (k = \overline{0, \infty}, i = \overline{1, n}).$$

Для проверки условия (21) будем производить расчет фильтров Фурье (10), но при этом испытательный сигнал на объект подавать не будем (v(t) = 0).

Если при этом выполняются следующие равенства: $\alpha_{ui} = \alpha_{yi} = \beta_{ui} = \beta_{yi} = 0$,то выполняется условие $\Phi\Phi$ -фильтруемости внешнего возмущения.

При ФФ-фильтртуемом внешнем возмущении процедура 3. идентификации будет сходиться и следующие равенства выполняются

$$\lim_{t \to \infty} \hat{\alpha}_k(t) = \alpha_k, \lim_{t \to \infty} \hat{\beta}_k(t) = \beta_k, \ i = \overline{1, n},$$

где α_k и β_k – точные значения частотных параметров объекта (1) на испытательных частотах $\omega_i (i = \overline{1, n})$.

ФФ-фильтруемость внешнего возмущения легко проверяется экспериментально [3].

Оценить длительность адаптации можно по относительной разности оценок частотных параметров объекта (9).

Будем рассчитывать частотные параметры в моменты времени кратные *базовому nepuody*

$$T_b = \frac{2\pi}{\min\left[\omega_1, \omega_2, \dots, \omega_n\right]}.$$

Условия окончания процесса идентификации имеют вид:

$$\left|\frac{\hat{\alpha}_i(kT_b) - \hat{\alpha}_i(kT_b - 1)}{\hat{\alpha}_i(kT_b)}\right| \leqslant \theta, \quad \left|\frac{\hat{\beta}_i(kT_b) - \hat{\beta}_i(kT_b - 1)}{\hat{\beta}_i(kT_b)}\right| \leqslant \theta, \quad (i = \overline{1, n}, k = 1, 2, \ldots)$$

где $\hat{\alpha}_i$, $\hat{\beta}_i$ $(i = \overline{1, n})$ – оценки (9), определяемые в моменты времени кратные периоду T_b , θ – заданное положительное число. На каждом интервале стационарности считаем, что $\hat{\alpha}_i(0) = 0$, $\hat{\beta}_i(0) = 0$.

7. Пример

7.1. Постановка задачи

Рассмотрим объект управления, описываемый уравнением

$$d_3^{[\nu]}\ddot{y} + d_2^{[\nu]}\ddot{y} + d_1^{[\nu]}\dot{y} + d_0^{[\nu]}y = k_1^{[\nu]}\dot{u} + k_0^{[\nu]}u + f,$$

Объект имеет постоянные коэффициенты на трех интервалах ($\nu = 0, 1, 2$) длительностью $t_1 - t_0; t_2 - t_1; t_3 - t_2$.

На начальном интервале стационарности объекта Іо его коэффициенты равны

(22)
$$d^{[0]}(s) = (5s+1)(0.04s^2 + 0.24s + 1) = 0.2s^3 + 1.24s^2 + 5.24s + 1, \ k^{[0]}(s) = 0.4s + 1;$$

а в первом и втором интервалах они принимают значения

(23)
$$d^{[1]}(s) = (10s+1)(0.16s^2 + 0.48s + 1) = 1.6s^3 + 4.96s^2 + 10.48s + 1, \ k^{[1]}(s) = 0.3(0.4s+1).$$

(24)
$$d^{[2]}(s) = (10s+1)(s^2+0.8s+1) = 10s^3+9s^2+10.8s+1, \ k^{[2]}(s) = 0.3(0.4s+1).$$

Рис. 2. Выход объекта без адаптации

которые неизвестны регулятору.

Эти коэффициенты таковы, что регулятор, найденный для начального интервала стационарности I_0 , не обеспечивает устойчивость системы с объектом на втором интервале стационарности I_2 . В связи с этим необходима адаптация регулятора. Выход системы (1), (2) y(t) без адаптации регулятора в течение трех интервалов стационарности объекта показан на рис. 2.

Внешнее возмущение в течение эксперимента имело вид $f(t) = 0.5 \operatorname{sign}(\sin 2.5t)$. Требуется найти регулятор

(25)
$$g_2^{[\nu]}\ddot{u} + g_1^{[\nu]}\dot{u} + g_0^{[\nu]}u = r_2^{[\nu]}\ddot{y} + r_1^{[\nu]}\dot{y} + r_0^{[\nu]}y,$$

который, после его адаптации, обеспечивает необходимую точности системы (22), (25).

(26)
$$y^* = 0.01.$$

на каждом интервале стационарности объекта.

7.2. Нулевой интервал стационарности объекта

На интервале стационарности I_0 регулятор строится, используя известные коэффициенты объекта (22).

В результате выполнения процедуры 4. синтеза получен регулятор

(27)
$$0.0048\ddot{u} + 0.608\dot{u} + 1.5u = -8.66\ddot{y} - 93.7\dot{y} - 216y.$$

При выполнени расчетов для обеспечения требуемой точности модули корней базового полинома $\delta(s)$ выбраны как $s_{\delta,1} = 3$, $s_{\delta,2} = 11$, $s_{\delta,3} = 33$. Они превышают

Рис. 3. Выход объекта в течение интервалов нормальной работы

модули корней полинома d(s) объекта $(s_{d,1} = -0.2, s_{d,2,3} = -3 \pm j4)$, и поэтому система (22), (27) обладает запасами устойчивости.

В итоге модальный полином принял вид: $\psi(s) = 0.2(0.012s+1)(s+3)(s+11)(s+3)(s+11)(s+3)(0.4s+1)$, в котором полином реализуемости $\varepsilon(s) = (\frac{0.2}{s_{\delta,3}}s+1)$.

В течение нулевого интервала стационарности объект замкнут регулятором (27). Выходной сигнал y(t) приведен на рис. 3. Величина ошибки не превышает требуемую точность y^* (26). Система (22) (27) обладает следующими характеристиками на нулевом интервале стационарности: $||t_{yf}(s)||_{\infty} = 0.0068$, запас по фазе равен 68.2° и запас по модулю стремится к ∞ .

7.3. Первый интервал стационарности объекта

В момент времени t_1 коэффициенты объекта изменились и приняли значения (23). После чего была проведена адаптация регулятора согласно алгоритму 1.

В результате идентификации были найдены оценки коэффициентов полиномов объекта.

(28)
$$\hat{d}^{[1]}(s) = 1.04s^3 + 4.02s^2 + 8.77s + 1, \ \hat{k}^{[1]}(s) = 0.07s + 0.283.$$

При этом параметры испытательного сигнала (6) были следующими $v^{[1]}(t) = \sum_{i=1}^{3} \rho_i^{[1]} \sin \omega_i^{[1]} t$. Испытательные частоты ω_i $(i = \overline{1,3})$ близки к корням полинома d(s) объекта на нулевом интервале I_0 и равнялись $\omega_1^{[1]} = 0.2$, $\omega_2^{[1]} = 4$, $\omega_3^{[1]} = 6$.

С учетом условия (7) амплитуды испытательного сигнала задавались следующими: $\rho_1^{[1]} = 7.1 \cdot 10^{-3}, \ \rho_2^{[1]} = 9.5 \cdot 10^{-3}, \ \rho_3^{[1]} = 5.8 \cdot 10^{-3}.$

После определения оценок (28) был синтезирован регулятор

(29)
$$0.0009\ddot{u}^{[1]} + 0.903\dot{u}^{[1]} + 0.34u^{[1]} = -(18.4\ddot{y}^{[1]} + 116\dot{y}^{[1]} + 202y^{[1]}).$$

Объект был замкнут этим регулятором. Выход объекта на соответствующем интервале нормальной работы объекта приведен на рис. 3. Величина ошибки не превышает требуемой y^* (26). Система (23) (29) обладает следующими характеристиками: $||t_{yf}(s)||_{\infty} = 0.0056$, запас по фазе равен 74.8° и запас по модулю стремится к ∞ .

7.4. Второй интервал стационарности объекта

В момент времени t_2 коэффициенты объекта изменились и приняли значения (24).

В результате идентификации получены оценки коэффициентов объекта

$$\hat{d}^{[2]}(s) = 7.95s^3 + 9.27s^2 + 8.77s + 1, \ \hat{k}^{[2]}(s) = 0.092s + 0.273.$$

Испытательный сигнал сохранен прежним.

Используя эти оценки, синтезирован регулятор

(30)
$$0.0011\ddot{u}^{[2]} + 0.106\dot{u}^{[2]} + 0.306u^{[2]} = -(80.2\ddot{y}^{[2]} + 262\dot{y}^{[2]} + 189y^{[2]}).$$

На рис. 3 приведен выход объекта при действии внешнего возмущения, точность системы соответствует требуемой y^* (26). Система (24), (30) обладает следующими характеристиками: $||t_{yf}(s)||_{\infty} = 0.0103$, запас по фазе равен 78.4° и запас по модулю стремится к ∞ .

Список литературы

- 1. Alexandrov A.G. Finite-frequency method of identification // 10th IFAC Symposium on System Identification. Preprints. Copenhagen, Denmark. 1994. Vol. 2. P. 523-527.
- Alexandrov A.G. Accurate adaptive control // Proceedings of the IASTED International Conference Automation Control and Information Technology. Novosibirsk, Russia, 10-13 June 2002. Novosibirsk: ACTA Press. P. 212-217.
- Alexandrov A.G., Orlov Yu.F. Frequency Adaptive Control of Multivariable Plants // Preprints of the 15th Trienial World Congress of the IFAC. Barcelona, Spain, 21-26 July, 2002.
- 4. Alexandrov A.G. Finite-frequency identification: selftuning of test signal // Preprints of the 16th IFAC World Congress. Prague, Czech Republic. 3-8 Jily, 2005.
- Stability of adaptive system: passivity and abereging analysis / Ed. by Anderson B.D.O., R.R. Bitmead C.R. Jonson, P.V. Kokotovich R. Kosut I.M.J. Mareles L. Rralu and B.D. Riedle. Cambidge, Massachusets: MIT Press, 1986.
- 6. Iserman R. Digital control systems. Springer Verlag. 1981.
- Landau I.D. Competition, interaction, control // European Control Conference. Plenaries and mini-courses. Brussels, Belgium. 1997. P. 1-35.
- 8. Ljung L. System Identification. Theory for the User. Englewood Cliffs: Prentice-Hall, 1987.
- 9. Porter B., Grossley T.R. Modal control theory and applications. London, 1972. 233 p.
- Yakubovich V.A. Adaptive stabilization of continuous linear plants // Automation and Remote Control. 1988. Vol. 49, No. 4. P. 97-107.
- Zhao X., Lozano R. Adaptive pole placement for continuous-time system in the presence of bounded disturbance // 12th World Congress IFAC. Preprints of papers. Sydney, Australia. 1993. Vol. 1. P. 205-210.