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Abstract. Taking to account application matter it is suggested the finite-frequency
conception of the linear plant control. The concept bases seif upon a notion of the
frequency domain parameters as values measuring in experiment and completely describing

the plant.

It is shown that these parameters are sufficiently for a analysis of controllability
and stability, the controller and adaptive control design. The methods and algorithms

are given,
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1. INTRODUCTION

The iast years the design time of a plant and con—
trol device is strongly decreased. This is the
result of using of computer-aided-design (CAD) and
unification of the control device elements. Shor-
tening of a design duration creates often a situa-
tion when the plant and control system are ready to
putting into operation but there is not the mathe-
matical model of a plant and therefore the control
aigorithm cannot be found.

In these conditions it is necessary a new approach
proceeding from the experimental investigations

results rather then the mathematical model of plant.

The purpose of this paper is the finite-frequency
conception in which the plant is described by the
frequency domain parameters (FDP). The FDP are
derived experimentally under the plan testing by
the harmonic signals.

The conception name reflects its connection with a
classical frequency control theory (MacFarlane,
1979) and its distinction that consists in using of
finite pumber of the test frequencies.

2. FREQUENCY DOMAIN PARAMETERS (FDP)

Consider the plant described by the equation
(n )
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_{n_)
+knu+mn f 2 +...+mof (n1<n, n2<n), (2.1)

2
in which y(t) is the measured output, u{t) is the
controiled input, f(t) is the external disturbance.

The coefficients d , kj._mk (i=575:i.j=5751,k=5jﬁ;)
are unknown. The external disturbance is a bounded
function

[F(t))<f™ (2.2)
where £~ is the specified number.

[t is assumed that the plant (2.1) is completely
controllable. If the plant is unstable the estima
tien CD of the unstability degree

Re 5} (2.3)

Cn>mux{Re Sere-s

where s, (i=1,n) are the roots of polynomial d(s)=

n-1

s"+d [3 +...4 +do is known.

Definition 2.1 (Alexandrov, 1989). A set of the 2n
numbers

o =Re W(i+in ), B =Im WO+je )(k=1.n), DC~ (2.4)
is called the frequency domain parameters (FDP).

Here W(s)=k(s)/d(s)_is the transfer function of the
plant (2.1), @ {k=1,n) are the positive numbers

that are below called the test frequencies, wj#O,
o0, itj, (1, j=1,m). -

The method of the experimental determination of the
FDP consists in the following.

Apply to the input of the plant (2.1) the test
signal

v(t)=e

n

iEjpks:m wt, OC, . (2.5)
where X, O P, (k=1,n) are given numbers.

The signal y(t) after muitiplication by M is
applied to the input of the Fourier filter(Eykhoff,
1974). The outputs of the filter give the FDP esti-

mations t 45
2 ° S —
ak(8)= X, j y(t)e ""sin mkt dt, (k=1,n) (2.6)
h" tg
t0+6
2 -t —
B ()= 5 J y(t)e ''cos @ t dt, tk=l,m)  (2.7)
k
o

Theorem 2.1. The estimations of the frequency dom-
ain parameters of the plant (2.1) have the next
property

lim « (8)=a, lim B (5)=R , (k=1,n) (2'8%
5 fxo T

The theorem proof is given in Appendix.
Definition 2.2. A set of the 2n1 numbers (2.4)
where k=1.n3, and nSn3s2n is called the widened

frequency domain parameters of the plant (2.1). »n
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3. PROBLEMS STATEMENT

Consider the system (2.1) with a controller
g at™v (“"’+...+roy 3.1)

ot i
n-1 + gOutrn- !Iy

Problem A. Find the conditions of the output bound-
ness of the system (2.1), (3.1) if the plant is
described by widened FDP and the controller coef-
ficients are known. a

Let some complementary apriory information about
the poiynomials k(s) and m(s) of the plant (2.1)
and the external disturbance be:

{a) k(s) is the Hurwitz polynomial (its roots have
the negative real parts);

{b) coefficient m and the least root s of the

polynomial m(s) satisfy the next conditions ]nojsn:.

|5]25™ where -3 and 5" are the specified mumbers;

(c) the external disturbance may be represented as
y2

J1 -
flt)= } 8:sin m:t+ ¥ 8°cos m:t . (3.2)
=1 i=t

where rS: (i=l.11). 5':
(i=l,nax(1l,12)) are the unknown numbers.

s T— r
(i=1, 12) and (di

Problem B (accurate controi). Find the coefficients
of the controller (3.1) for the plant (2.1) desc-

ribed by the FOP o and 8, (k=I,n) such that the

system (2.1), (3.1) satisfies the requirements on
accuracy

v |sy™ 2, 3.3)
where y"l is given number, T is a time moment in
which transients damp out. -

If the coefficients of the plant (2.1) are known
the coefficients of the controller (3.1) may be
foun,d using the Bezout-Identity

d(s)R(s)-k(s)r{s)=x(s)k(s)y(s) (3.4)
where Hurvitz polynomials x(s) and ¢(s) are built
up (Alexandrov, 1992) so that the controlier to be

found from the identity (3.4) complies with the
requirements ‘on accuracy (3.3). -

If there is not the information about the polyno-
mial k(s) and m(s), then the following more weak
task arises.

Problem C (modal controil). Find the coefficients of
the controlier (3.1) for plant (2.1) described by

the FDP o and B { k=1I,n) such that the characteris-

tic polynomial of system (2.1), (3.1) coincides
with the given Hurwitz polynomial &(s). -

If the coefficients of the plant are known the
solution of problem C consists in the solution of
the next Bezout-Identity

d{s)g(s)-k(s)r(s)=58(s) 3.5)

Solution of the problem C for the unknown coeffi
cients is built up from two steps: the tirst step
is the identification of these coefficients wusing
the given FDP of plant, the second step is the
solution of identity (3.5).

The next task came into existence in connection
with the first step.

Problem D (identification). Find the coefficients
of the plant (2.1) using its FDP. -

Let us consider the assumptions of the section 2
about the plant properties.

Problem E (controllability analysis). Find the
conditions of the -controllability of the plant

described by FDP o and ,Bk {k=T,n). -

In the problems B and C it is implied that the FDP
determination and control design are separated in
the time. Now we’ll assume that the FDP are unknown
and found during the process of the controller
tuning.

Problem F. (adaptive accuracy contrel). Find the
coefficients tuning algorithm of the controiler
(3.1) such that in the presence of external distur-
bance (3.2) the requirement on accuracy is fulfil-
led

vl o , ot ' (3.6)
where ;c—' is a time moment. s

Time moment t includes both the damped time and the
controlier tuning time.

4. FREQUENCY EQUATIONS

Consider Bezout-ldentity

a(s)c(s}-b(s)e(s)=q(s) 4.1)
P S i o1 i
where a(s)=s"+ za‘s » b(s)=F bs’, (pp,) and
10 10
P2
q(s)= } qlsi are the given polynomials with the

im0
b p‘J p-1

real coefficients, c(s)= c‘si. e(s)= ¥ eisl are
10 1=0
the sought polynomials with the real coefficients.

Let us divide the identity (4.1) by some polynomial
v{s)-of the degree p and then we obtain

lll(s)c(s)-\iz(s)e(s)ﬂa(s} {4.2)
where
¥ (s)=a(s)/v{(s),¥ (s)=b(s)/v(s), W (s)=q(s)/v(s).

Assuming that .
v(s )#0 (k=1,p) (4.3)

we place in (4. 2) s=s =A+jo, (k=1,p), and derive
the frequency equations
(o #38  Je(s )-(x, +iB, Je(s )=(a, +iB, )

(k=1,p) (4.4)
in which o =Re W (5), Buzln ¥.(s) (i=1,2,3,

k=1,p) are the frequency domain parameters of the
transfer functions Hl(s) (i=1,2,3).

Lemma 4.1. (Alexandrov, 1989) The frequency equati-
ons {4.4) have the unique solution which coincides
with the solution of (4.1) if the polynomials a(s)
and b(s) are relatively_pzine and the frequencies

» #0, o F {k#i) (i,k=1,p). .
x Ko [ ]

5. STABILITY CRITERION

The characteristic polynomial of system (2.1),(3.1)
has a view

n(s)=d(s)g(s)-k(s)r(s) (5.1)
Consider the identity of a view (4.1)

n(s)c(s)-k(s)e(s)=s"""'k(s) (5.2)
under p=2n-1.

It is easily shown that the polynomials n{(s) and
k(s) are relatively prime and then identity (5.2)

has the unique solution e(s)=n{s)-s>""*, c(s)=k(s).
1f the identity (5.1) divides by the polynomiai

d(s) and places s=s k=‘.l.+j¢.-.‘k {k=1,2n-1) we derive the

expression (4.2) in which
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H!(sk)=g(sh)—ﬂ(s*)r(sk) f vz(sk)ﬂ(sk) .

l3(sk)=s:"-!ﬂ(sk). (k=T72n-1) (5.3)

Criterion 5.1.(Alexandrov, 199la) The system (2.1),
(3.1) with a plant described by the widened FDP is
asymptotically stable under f£{t)=0 (and has the
bounded solutions if f{t) is a bounded function) if
and only if the solution of the freguency equations

(4.4) (5.3) satisfies for e‘ {i=0,2n-1) the inequa-
lities of Hurwitz’s criterion of stability.

6. CONTROLLER DESIGN
Accurate Control of a Minimum-Phased Plant (Solu
tion of the Problem B)

Dividing the identity (3.4) by polynomial d(s) and
placing s=st=1+jmk one can obtain the expression

(4.4) in which
"1(51)’1’ Hz(sk)=ﬂ(sl). Hz(s.)=W(sk)x(sk)?(sk).

(k=1,n) (6.1)
So, if the coefficients of the controller (3.1)
R.,=C,, I =e, (i=0,n~1), (6. 2)

where ¢ and e, (i=0,n) are the solution of the

frequency equations (4.4), (6.1) then the system
(2.1), (3.1) satisfies the requirement to accuracy
{3.3).

Identification (Solution of the Problem D)
Form the identity

d(s)c(s)-k(s)e(s)=s"k(s) , (6.3)
which has the unigue solution s"+e(s)=d(s), c(s)=
k(s).
Dividing the identity (6.3) by d(s) and placing
s=sl=l+jmIl one can obtain the expression {(4.4) in
which

W (s5,)=1, Wo(s )=W(s ), ¥ (s )=sW(s ), (keI,T)

(6.4)

So, the coefficients of the plant (2.1)

kx=ci (i=0,nl), dJ:ej (j=0,n-1}. {6.5)

where <, and e, (i=1,n) are the soiution of the

frequency equations (4.4), (6.4).

Modal Control of Nonminimum-Phased Piant (Solution
ot the Probilem C)

Using the values {6.5) we find the coefficients
of the controlier (3.1) from (3.5).

Completely Controilability Condition (Solution of
the Problem E)

Criterion 6.1. The plant (2.1) described the FDP is
completely controliability if and only if the de-
terminant of the matrix of the frequency equation
{4.4), (6.1) is not zero.

7. ADAPTIVE CONTROL (SOLUTION OF THE PROBLEM F)

Process of the controller design in the accurate
control problem {problem B) may be separated in a
time from a process finding of FDP. These processes
must be continuous or simultaneous in the adaptive
systems.

Algorithm 7.1. It contains the following steps:

Step 1. Apply the test signal (2.5) to the plant
(2.1) and obtain the FDP estimations uktﬁl) and

B(5) (k=1,n) with Fourier filter output. A filt-
ring interval 8’ is determined from the necessary
conditions of convergence
lek('sl)-ﬂk(ﬁi—bt”{sp , !ﬁt(sl)-pk(al-z\t)lqp
(k=Iin), (7.1)
where € is a sufficiently small number, At is a
number .
Step 2. Solve the system (4.4), (6.1) replacing x,
and B, (k=1,n) by their estimations and find the
coefficients of the controller gi(63) and rl(Gl)
(i=1,n-1).
Step 3. Close the plant (2.1) by the controller
2(3,,5)u= r(3 ,8)y+1(s)v(t), (7.2)
where l(s):lqsq+...+lo. a<n, 1, (i=0,q) are a given
numbers and using Fourier filter obtain the FDP of
the system (2.1), (7.2) v, (8} and u (5)) (k=I.m)
where a filtring interval 62 is determined from the
necessary conditions of convergence
|"u(6z)“’x(52‘“)1“c . ]pk(62)~uk(62—.ﬂt)i<£c.
(k=I;n) 7.3)
where EC is a sufficiently small number.
Remark 7.1. Repeating of the proof of the theorem
2.1 one can obtain
iim Dh(52)=vk=Re Uci(sk).

Béxe
lim g (8,)=p =Im W_ (s ), (k=1,n) (7.4)
D
2
where WI(S)W(S)

'cl(s)= ]m;(—s) ’ {7.5)

¥, ()=1(s)/r(s), W_(s)=r(s)/g(s).
Remark 7.2. The following notion is used below +to

determine a moment of adaptation finishing. Let us
introduce the function

/“ (1) ,=* = 2, o 12) =k — :
s )=\ ..E.;'* (V-0 (8 )% kzﬂrt ChIRCPY
(1) €2) —_— (7.6)
where yh. and 7& * (k=1,n) are the given positive
numbers,
= _ -1 - o -1
v (5,)=v, (5,)a; (5) » B3 )= H (5)a, "(8,),

2 2 —% K x_4 -~ LI
9, 3= (B4 (8) Vv, T B =H 9,

1

a7 . k=T,

v, and . (k=1.7) are the FDP of a closed-loop
system with "ideal” contreller (6.2).

A number n(Bl) is the index of aproximity of thf
contrsliers (7.2) to "ideai”™ controller. The FDP l)‘l
and p {k=1,n) may be calculated apriori. In fact,
taking account the identity (3.4) we obtain from
(7.5) the transfer function W:l(s)=l(s)/x(s)v;(s)

with the known coefficients. ™
Step 4. Check the condition of proximity
(8,)<e, (7.7)

(£ is the given number). It may be shown that (7.7)
is a sufficiently condition of adaptation conver-
gence.

If (7.7) is fulfilled, place v(t)=0 and the end.
Step 5. Calculate the FDP estimations of the plant
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u(&z) and B(Sz) from the formulae (7.5) under s=s5,
(k=1,n) placing vk=vk(62), "u=“u(62) {k=1,n), g(s)=
g(&l,s), r(s)=r(61.s) and solve the system (4.4),
(6.1) substituting « =x(5,) and B =p(5)) (k=I,n)

and go to step 3 (substituting the coefficients of
the controller (7.2) by one to be obtained) and so
on.

Remark 7.3. The filtering interval is now determi-
ned as

Ggsnax(ga,62)+K {7.8)

where 83 is found from (7.3), K is a positive num-
ber. =

The adaptation process converges if (a) the filt-
ring intervals durations satisfy the conditions of
view (7.8) and (b) the unstability degrees of the
system for each filtring interval are 1least or
equal than Cn'

If the condition (b) is not fulfilled then it is
necessary to increase a number A in the test signal
and the Fourier filter.

8. CONCLUSION

of the
const-

The finite-frequency theory of a control
single-input-single-output (SISO) plants is
ructed.

The classical frequency control theory originated
from Nyquist’s criterion end Bode diagram is the
strongly instrument of the control system design
more fifty years already. In some sense the finite-
frequency theory is the modification of the clas-
sical frequency theory. Such modification is chal-
lenged by a change of the control system design
conditions.
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APPENDIX
The proof of the theorem 2.1.

Transform the equation {2. 1)} to the Cauchy form
(A.1)

where x{(t) is. the n dimensional vector of the state
variable of the plant,” A, b, ¢ and d are a matrix
and vectors of the numbers respectively.

x=Ax+butcf, y=dx ,

Solution of the equation (A.1) has a view

y(t)=x!(t)+xz(t)+x3(t) {(A.2)
where .
xi(t)=de‘“t"'u)x(to). x,()=d J'te“t"nbu(t) dr,
. 0
x,(t)=d _[ Dt (ry dr. (A.3)
t

0

If u(t)=v(t), and f(t)=0, then (Alexandrov, 1989,
Alexandrov, 1991b) the relations (2.6), (2.7) are
fulfilled.

Therefore, to prove the theorem we must show that
the expressions
v 48
2o =kt .
eqk(ii).ss—.[t xg(t)e sin wkt dt,
0

e, (5)=—2 r"wx (tye Meos o t dt, (k=1,n) (A.4)
Bi( _W . 2 CcOS x » =1,Nn .

o
are the vanishing functions:

i&i:‘ea‘(a)ﬂ' ;i:eﬁk(’j)=0' (k=1,n). (A.5)

It is obvious, that

t 3
e, 03]= || nee-nf(n) drls £ fnie-n)| dar, 4.6
t t
o 0

where h(t—r):deA(t't)c.

It is known (Demidovich, 1967), that
s*rerr-m)
’

Ih(t-t) < k e tr (A.T)
where s™= max Re 2,(A), and 1 (A) {i=1,n) are the
1<i<n

eigenvalues of the matrix A, €>0 is any sufficien-
tly small number, k1 is a number.

So,
x.

i
lxa(t) E3 —_—
-{5 +£)
and therefore

2 o 8 —At
ey, (81 ;J—k-s-J't I (0] fsin o t] dat <
0

*
e fS HEN L),

{1 (A.8)

2 *k
£
«—0-1
3
-(s +c)pk5

where | is a bounded number because k)Cozs'+c.

(k=1,n),

So, the first relations {A. 5) is proved. The proof
of the second relation is analogously.

Vol. 9 —56



