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Abstract: The plant of the first order with time delay is considered. Coefficients of plant are
unknown and can be changed in some isolated time moments. Self-tuning PID-I controller for
the plant is proposed in the presence of unknown-but-bounded external disturbances. The test
signal with sum of two harmonics is used for identification of plant coefficients. Methods of tuning
of amplitudes and frequencies are given. To guarantee the stability of the closed-loop system
the special switching technique between I- and PID-controllers is presented. The I-controller is
selected to provide stability of the plant independently on its mode. It provides stability and
allows to identify the plant. Algorithms of self-tuning of PID- and I-controllers are proposed. A
real regulator named ST-PID-1 was developed on the basis of these algorithms. The obtained
results are supported by experimental applications.

Keywords: adaptive control, PID control, I-controller, time delay, frequency identification,
unknown bounded disturbance.

1. INTRODUCTION

Proportional-Integral-Differential (PID) controllers are
widely used in industry because they are simple and ef-
fective. Self-tuning PID controllers are designed for plants
with time-varying coefficients. Different methods of the
identification are used for plant identification. These meth-
ods allow to estimate plant’s parameters and use them
for adjusting of PID controller. However, the identifica-
tion is complicated because of external disturbances. Step
response methods (Ziegler and Nichols (1942)) are used
when the external disturbance is absent. In this case, it
is also possible to use relay methods (Ziegler and Nichols
(1942), Astrom and Hagglund (1984), C.C. Hang (1993),
Astrom and Hagglund (2006)). However, the relay method
is not suitable because it breaks the normal mode of the
plant. In papers Sato and Inoue (2005) and Sato and
Kameoka (2008), the least-squares method (LSM) is used
for determination of coefficients of the plant. In the paper
W.K. Ho (1996), the same method is used in conjunction
with band-pass filter. This method allows better detection
of coefficients of the plant. However, LSM is not applicable
when the external disturbance is an unknown bounded
function. It is easy to find an external disturbance for LSM
which gives impermissible identification errors.

In this paper, the self-tuning PID-I controller is proposed.
Coefficients of plant are unknown and they change in suf-
ficiently seldom time moments. The identification is com-
plicated due to external disturbances. The finite-frequency
identification method is used for identification (Alexan-
drov (1994), Alexandrov (1999)). The plant is excited by
a test signal which is a sum of two harmonics. Amplitudes
of the test signal is adjusted so that the level of distor-
tions introduced in the plant’s output does not exceed
the specified limit. Fourier’s filter is used. Identification
error for given filtration time depends on the choice of test

signal frequencies (see, for example, Alexandrov (2005)).
The frequencies must be chosen in such way that minimizes
an identification error of the given filtration time.

The results of identification are used for design of PID
controller based on concept of Internal Model Principle
(Visioli (2002)). This controller compensates the time con-
stant of the plant, so the system performance is determined
by the given parameter of synthesis of controller and time
delay in the control channel. PID controller also provides
high amplitude and phase margins.

The closed loop system with PID controller may lose
stability because of change of plant coefficients. In this
case, the plant is closed by I-controller instead of PID
controller. I-controller can provide stability for a large
range of plant’s coefficients and it also allows tracking a
reference signal without static error. On the other hand,
this controller can not provide fast reference tracking
performance. So the plant is closed by I-controller only
when the closed loop with PID controller loses stability.
Thus, the loop of the system is not broken. It allows to
identify the plant.

The paper is organized as follows. In the next section
the problem statement and the basic assumptions are
presented. The Section 3 is devoted to an identification
problem of the plant by the finite-frequency method. Re-
lation of identification errors with test signal frequencies
is investigated. Methods of self-tuning of amplitudes, fre-
quencies and duration of filtration are proposed. Then
an expression for coefficient of I-controller is given and
algorithms of self-tuning of PID-I controller are proposed.
In Section 5, real self-tuning controller named ST-PID-
1, which implement on the basis of these algorithms, is
described. Experimental investigations of controller are
given.
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2. PROBLEM STATEMENT

Consider a plant described by equation
T [i]ẏ(t) + y(t) = k[i]

p u(t− τ [i]) + f(t), (1)

t[i] ≤ t < t[i+1], i = 1, 2, ..., N,

where y(t) and u(t) are output and input of the plant
respectively, f(t) is an unknown-but-bounded external
disturbance (|f(t)| ≤ f∗), i is the number of the plant’s
mode (i = 1, 2, ...N). Coefficients k

[i]
p , T [i] , τ [i] are

unknown numbers, they change in known (for simplicity)
time moments t[1], t[2], ..., t[N ], and they are constant in
each i-th mode

t[i] ≤ t < t[i+1], i = 1, 2, ..., N. (2)

Length of intervals (2) is such that t[i+1] − t[i] > ∆t∗

(i = 1, 2, ..., N) where ∆t∗ is the sufficiently large positive
number.

The possible values of plant’s coefficients lie into intervals
kp ≤ k[i]

p ≤ kp, T ≤ T [i] ≤ T , τ ≤ τ [i] ≤ τ , (3)

i = 1, 2, ..., N,

where lower (kp, T , τ) and upper (kp, T , τ) bounds are
given positive numbers.

The PID controller is

g[i]u̇(t) + u(t) = k[i]
c ε[i](t) + k

[i]
i

t∫
0

ε[i](t̃)dt̃ + k
[i]
d ε̇[i](t),

t
[i]
st ≤ t < t

[i+1]
st , t[i] ≤ t

[i]
st < t[i+1], i = 1, 2, ..., N. (4)

ε[i](t) = ysp(t)− y(t) + v[i](t), (5)

where g[i], k
[i]
c , ki[i], k

[i]
d are coefficients of the PID con-

troller, they are changing in the time moments t
[i]
st , ε(t) is

the tracking error, ysp(t) is the reference signal, v(t) is the
test signal.

Modes of plant and PID controller are illustrated in picture
1.

Fig. 1. Time intervals of plant and PID controller

Note, there does not exist a PID controller with time
invariant coefficients that could provide stability for plant
in each mode.

Tracking error (5) must satisfy the following condition:

|ε[i](t)| = |ε[i]∗(t)|+ |ξ[i](t)|, t ≥ t
[i]
st , i = 1, 2, ..., N, (6)

where |ε[i]∗(t)| is the achieved tracking error (ideal tracking
error) in case when the plant in i-th mode is known. Values
|ξ[i](t)| must satisfy the condition:

|ξ[i](t)| < q|ε[i]∗(t)|, i = 1, 2, ..., N, (7)
where q is the sufficiently small positive number.

Coefficients of the PID controller (4) are calculated
through the following expressions (Visioli (2002))

k
[i]
c = 2T [i]+τ [i]

2k
[i]
p (λ[i]+τ [i])

, k
[i]
i = 1

k
[i]
p (λ[i]+τ [i])

,

k
[i]
d = T [i]τ [i]

2k
[i]
p (λ[i]+τ [i])

, g[i] = λ[i]τ [i]

2(λ[i]+τ [i])
,

(8)

i = 1, 2, ..., N,

where λ[i] is the design parameter. It is chosen as λ[i] =
T [i]

ø , where ø = 2÷4 (Visioli (2002), Astrom and Hagglund
(2006)).

The closed loop system (1), (4), (5) is approximately
described by the following differential equation

λ[i]ẏ(t) + y(t) = ysp(t− τ [i]). (9)

Influence of the test signal v(t) to the output of the plant
is bounded and described by the influence coefficient of
test signal:

K [i]
v =

√√√√√√√√√√√

t
[i]
0 +2ta∫

t
[i]
0 +ta

(ysp(t)− y(t))2 dt

t
[i]
0 +ta∫
t
[i]
0

(ysp(t)− y(t))2 dt

, i = 1, 2, ..., N, (10)

where y(t) is the output of the closed loop system (1),
(4), (5), y(t) is the output of the closed loop system (1),
(4), (5) when the test signal is absent (v(t) = 0), ta is the
sufficiently large time.

The influence coefficient of test signal K
[i]
v satisfies the

following condition

K [i]
v ≤ K∗

v , i = 1, 2, ..., N, (11)
where K∗

v is the specified tolerance on the effect of test
signal.

The problem is to find coefficients of PID controller in
each i-th mode such that the conditions (6) and (11) are
satisfied.

3. IDENTIFICATION OF THE PLANT

The problem of finding of PID controller coefficients is re-
duced to identification coefficients of plant (1) in each i-th
mode. PID parameters are calculated (8) through of plant
coefficients. So it is important to identify the coefficients
of the plant more accurately because the effectiveness of
self-tuning of PID-controller depends on the accuracy of
the identification results.

3.1 Finite-frequency identification

There are some difficulties in the identification of plant:

a) reference signal is often a constant function therefore the
input signal has not enough harmonics (Ljung (1987));

b) often, the external disturbance is an unknown-but-
bounded function;

c) the plant must be identified in the closed loop (1), (4),
(5).
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The above problems cab be solved by using the finite-
frequency identification method. In accordance with this
method numbers

α
[i]
k = Re W [i]

p (jωk), β
[i]
k = Im W [i]

p (jωk), k = 1, 2,
(12)

where

W [i]
p (s) =

k
[i]
p e−τ [i]s

T [i]s + 1
, i = 1, 2, ..., N, (13)

are called frequency domain parameters (FDP) (Alexan-
drov (1994)).

The FDP estimates are determined experimentally as
follows: after the closed loop system is excited by the test
signal

v[i](t) = ρ
[i]
1 sinω1t + ρ

[i]
2 sinω2t, (14)

where ρ
[i]
k and test frequencies ωk (k = 1, 2) are specified

positive numbers, test frequencies are multiplies of each
other ω2 = µω1 (1 < µ < ∞, µ is integer), plant’s input
u(t) and output y(t) are fed to the Fourier filters, whose
outputs give the following estimates

α̂
[i]
yk = α

[i]
yk(t[i]) = 2

ρ
[i]
k

t
[i]

t
[i]
F

+t
[i]∫

t
[i]
F

y(t) sinωktdt,

β̂
[i]
yk = β

[i]
yk(t[i]) = 2

ρ
[i]
k

t
[i]

t
[i]
F

+t
[i]∫

t
[i]
F

y(t) cos ωktdt,

α̂
[i]
uk = α

[i]
uk(t[i]) = 2

ρ
[i]
k

t
[i]

t
[i]
F

+t
[i]∫

t
[i]
F

u(t) sinωktdt,

β̂
[i]
uk = β

[i]
uk(t[i]) = 2

ρ
[i]
k

t
[i]

t
[i]
F

+t
[i]∫

t
[i]
F

u(t) cos ωktdt,

k = 1, 2, i = 1, 2, ..., N,

(15)

where t
[i] is a filtering time and t

[i]
F is the initial instant for

filtering. Numbers t
[i] and t

[i]
F are multiples of a base period

Tb = 2π
ω1

and satisfied the inequality t[i] < t
[i]
F +t[i] < t[i+1].

The numbers α̂
[i]
yk, β̂

[i]
yk, α̂

[i]
uk, β̂

[i]
uk (k = 1, 2) allow us to

estimate the plant model coefficients.

If the disturbance f(t) and reference signal ysp(t) are
strongly FF-filterability, this mean that disturbance f(t)
and reference signal ysp(t) does not contain test frequen-
cies ω1, ω2, then

lim
t
[i]→∞

α
[i]
yk(t[i]) = α

[i]
yk, lim

t
[i]→∞

β
[i]
yk(t[i]) = β

[i]
yk,

lim
t
[i]→∞

α
[i]
uk(t[i]) = α

[i]
uk, lim

t
[i]→∞

β
[i]
uk(t[i]) = β

[i]
uk,

k = 1, 2, i = 1, 2, ..., N,

where α
[i]
yk, β

[i]
yk, α

[i]
uk, β

[i]
uk (k = 1, 2) FDP of the closed loop

system (Alexandrov (1998)):

α
[i]
yk + jβ

[i]
yk = W [i]

c (jωk)W [i]
p (jωk)

1+W
[i]
c (jωk)W

[i]
p (jωk)

,

α
[i]
uk + jβ

[i]
uk = W [i]

c (jωk)

1+W
[i]
c (jωk)W

[i]
p (jωk)

,

k = 1, 2, i = 1, 2, ..., N,

(16)

where W
[i]
c (jωk) is the frequency transfer function of

the PID controller. Conditions of FF-filterability can be
examined by experiment by using the Fourier filter (15)

without test signal (v[i](t) = 0). Condition of strongly FF-
filterability is satisfied when outputs of filter are zero (See
Alexandrov (2005)).

Assertion 3.1. Numbers α
[i]
yk, β

[i]
yk, α

[i]
uk, β

[i]
uk (k = 1, 2) are

related with FDP α
[i]
k , β

[i]
k (k = 1, 2) as follows

α
[i]
k =

α
[i]
ykα

[i]
uk + β

[i]
ykβ

[i]
uk

(α[i]
uk)2 + (β[i]

uk)2
, β

[i]
k =

−α
[i]
ykβ

[i]
uk + β

[i]
ykα

[i]
uk

(α[i]
uk)2 + (β[i]

uk)2
,

(17)
k = 1, 2, i = 1, 2, ..., N.

Assertion 3.2. Coefficients of the plant (1) and FDP (12)
are related by following expressions (for simplicity, the
index [i] omitted)

T 2 =
(α2

2 + β2
2)− (α2

1 + β2
1)

ω2
1(α2

1 + β2
1)− ω2

2(α2
2 + β2

2)
, (18.a)

k2
p = (α2

2 + β2
2)(T 2ω2

2 + 1), (18.b)

τ =
1
ω1

atan
Tω1α1 + β1

Tω1β1 − α1
(18.c)

ω1τ <
π

2
(18.d)

3.2 Choice of frequencies of the test signal

Arbitrary choice of frequencies of the test signal can
lead to large identification errors for given filtration time
(Alexandrov (2005)). Let’s analyze errors of identification.

Let FDP β1 in equation (18.a) be determined with error
δβ :

β̂1 = β1 + δβ . (19)
Introduce a quantity that characterizes the error in deter-
mining of the time constant:

∆T 2 = T̂ 2−T 2 =
(α2

2 + β2
2)− (α2

1 + (β1 + δβ)2)
ω2

1(α2
1 + (β1 + δβ)2)− ω2

2(α2
2 + β2

2)
−T 2.

(20)
Since ω2 = µω1, 1 < µ < ∞, then the following assertions.

Assertion 3.3. If frequency of the test signal tends to zero
(ω1 → 0) then ∆T 2 →∞.

Assertion 3.4. There are exist number δβ, T , τ , kp, µ ω1

such that, quantity ∆T 2 is unacceptably large.

Assertion 3.4 imposes the requirement of a sufficiently
precise definition of the FDP. In this case the error δβ

is sufficiently small and there doesn’t exist numbers T , τ ,
kp, µ and ω1 when quantity ∆T 2 is large.

An single-harmonic test signal uses for an first-order plant
without time delay. In this case, the frequency must be
chosen as close as possible to the magnitude of the inverse
time constant 1

T (Alexandrov (2005)). With this in mind,
as well as assuming that τ [i] ≤ T [i], (i = 1, 2, ..., N), we
choose the frequencies as follows

ω1 =
1

2T
, ω2 = 2ω1. (21)
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3.3 Self-tuning of amplitudes of the test signal

Amplitudes are self-tuned in the each i-th mode of plant
by using similar Alexandrov (2005) algorithm. The ampli-
tudes are computed as

ρ
[i]
k = ρbωk, k = 1, 2, i = 1, 2, ..., N, (22)

where ρb is the base amplitude (first, it is chosen suffi-
ciently small).

The purpose of self-tuning is a coefficient of influence of
test signal should satisfy

K∗
v −∆ ≤ K [i]

v ≤ K∗
v , i = 1, 2, ..., N, (23)

where ∆ is the given sufficiently small number.

Amplitudes are self-tuned by the following algorithm.
Algorithm 3.1

(1) Calculate amplitudes (22) with sufficiently small ρb

and then feed to the closed loop system (1), (4), (5) signal
(14) with given test frequencies (21).

(2) Examine the condition (23), if it is satisfied then turn
off the test signal and stop the self-tuning of amplitudes.
On the other hand, if the condition (23) is not satisfied
then put ρb = ρb ·σ, where σ is the given positive number,
and so on until the condition (23) will be satisfied.

3.4 Duration of the identification

The identification in each i-th mode stops when the
following conditions are satisfied (for simplicity, index [i]
omitted)∣∣∣∣∣ T̂κTb − T̂ (κ−1)Tb

T̂κTb

∣∣∣∣∣ ≤ θ,

∣∣∣∣∣ k̂p
κTb − k̂p

(κ−1)Tb

k̂p
κTb

∣∣∣∣∣ ≤ θ, (24)∣∣∣∣ τ̂κTb − τ̂ (κ−1)Tb

τ̂κTb

∣∣∣∣ ≤ θ,

T̂κTb , k̂p
κTb , τ̂κTb , κ = 1, 2, ...,M estimates are given at

time moments multiples of the base period Tb, θ is a given
positive number. Initial conditions are T̂ 0 = 0, k̂p

0
= 0,

τ̂0 = 0. It is assumed that the conditions (24) are satisfied
before will come next (i + 1)-th mode.

4. I-CONTROLLER AND SELF-TUNING
ALGORITHM OF PID/I CONTROLLER

4.1 I-controller

The plant in (i + 1)-th mode closed by PID-controller,
which designed for the plant of i-th mode, may lose
stability. In this case, for identification, the plant is closed
by I-controller. I-controller (it follows from (4) with g =
kc = kd = 0) is

u(t) = ki

t∫
t0

ε(t)dt (25)

where ki is constant for all modes.

Assertion 4.1. The closed loop system (1), (25), (5) is
stable if

0 < ki <
lm

kp

, (26)

where
lm = min

τ≤τ≤τ

T≤T≤T

ωu

sinωuτ
(27)

under conditions
Tωu sinωuτ = cos ωuτ, (28)

0 < ωu <
π

2τ
. (29)

4.2 Self-tuning algorithm of PID/I controller

1) Close the plant by I-controller (25) in the first mode.
Frequencies of test signal are calculated by using (21);

2) Find amplitudes of test signal are self-tuned by using
Algorithm 3.1 ;

3) Identify the plant in the closed loop system with I- (or
PID-controller): a) turn on the test signal (14) and feed
input and output of the plant to the Fourier’s filter (15)
which output for a given value t (or if (24) is satisfied)
gives the estimates of FDP (17); b) Use (18.a)-(18.c),
substituting estimates of FDP, for calculation of plant’s
coefficients estimates and then turn off the test signal
(v(t) = 0);

4) Coefficients of PID-controller for identified plant are
calculated by using (8). Then the plant is closed by this
PID controller.

5) There are two variants into the next mode of plant:
a) if condition |y(t)| ≤ y∗ is satisfied (the closed loop
system is stable) then go to operation 2); b) otherwise,
if the closed loop system loses stability (|y(t)| > y∗) then
go to operation 1).

5. EXPERIMENTAL RESULTS

5.1 Experimental setup FM-2

Experimental setup FM-2 is the setup for investigations
of adaptive controllers in a semi-industrial environment.
This setup includes an industrial controller WinCon-8341
and industrial computer Athena, which interact with
each other through embedded DAC and ADC converters.
Plant simulator is implemented in the industrial computer
Athena. Self-tuning PID-I controller, called ST-PID-1, is
implemented in the industrial controller WinCon-8341.

5.2 Results of experiments

Simulated plant have a follow form:

wp(s) =
k

[i]
p e−τ [i]s

(T [i]s + 1)(T ∗1 s + 1)(T ∗2 s + 1)
, i = 1, 2, ..., N,

(30)
where T ∗1 and T ∗2 - unmodeled dynamics T ∗1 ≤ T ∗2 < T . In
experiments: T ∗1 = 0.2 sec and T ∗2 = 0.3 sec. Coefficients
of the plant (30) k

[i]
p , T [i], τ [i] changed in each i-th mode

according with table 1. Duration of an each mode is
1400 second. External disturbance is f(t) = 0.5sign[sin 3t].
Bounds of coefficients are kp = 0.1, kp = 4, T = 1, T = 8,
τ = 0.1, τ = 2.
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Table 1. Coefficients of the plant

1 2 3 4 5 6 7 8

kp 3.51 2.73 2.16 1.05 1.49 3.97 3.89 2.29

T 3.22 1.49 2.20 6.90 2.63 3.69 2.53 6.13

τ 0.61 0.47 1.75 1.16 1.33 0.38 1.25 1.27

Experiment 1. PID controller designed for minimal
bounds (kp, T , τ). Parameters of PID controller doesn’t
change, self-tuning doesn’t work. Results of experiment
are shown in picture 2.

Fig. 2. Output of the system without selftuning

From picture 2 shown that PID controller designed for
minimal bounds can’t provide stability for all modes.

Experiment 2. Self-tuning PID/I controller is work. Test
frequencies are ω1 = 0.0625rad/s and ω2 = 0.1250rad/s.
Amplitudes self-tuning with the influence coefficient of
test signal K∗

v = 1.3 and the tolerance ∆ = 0.1. PID
controller designed by (8) with λ[i] = T̂ [i]

4 (i = 1, 2, ..., 8).
The identification stops when the relative identification
error is θ = 0.02.

Output of the system is showed in picture 3 a). The
function |ξ[i](t)| from (6) (|ξ[i](t)| = |ε[i](t)| − |ε[i]∗(t)|) is
shown at 3 b). I-controller is connecting in the 5-th mode,
it shown in picture 3 c). The function |ξ[i](t)| in 6-th mode
is shown in 3 d). Notations are used in all figures: black
vertical dash line denote time moments t[i], black small
vertical dash dot line denote time moments t

[i]
st . Influence

coefficient of test signal K
[i]
v and estimates are shown in

table 2, where gray rows are shows modes when I-controller
connected.

a) b)

c) d)

Fig. 3. Results of experiment 2: a) output of the system,
b) function |ξ[i](t)|, c) function |ξ[i](t)| in 5-h mode,
d) function |ξ[i](t)| in 6-h mode.

Table 2. Results of experiment 2

Mode

number kp k̂p T , c T̂ τ , c τ̂ K
[i]
v

1 3.51 2.90 3.22 2.17 0.61 1.81 1.23

2 2.73 2.70 1.49 0.21 0.47 0.25 1.23

3 2.16 1.67 2.20 1.86 1.75 1.31 1.16

4 1.05 0.89 6.90 5.88 1.16 2.07 1.20

5 1.49 1.42 2.63 2.13 1.33 2.27 1.29

6 3.97 3.39 3.69 3.40 0.38 0.36 1.11

7 3.89 4.14 2.53 2.73 1.25 1.28 1.13

8 2.29 1.60 6.13 5.57 1.27 1.63 1.16

We can draw conclusions: from figures 3 b), c) and d) that
purpose (6) is satisfied; from last column of table 2 that
purpose (11) is satisfied.

6. CONCLUSION

In this paper, a new technique of adaptive control of the
multi-mode first order plant with time delay has been
presented. It is based on two-frequencies identification
of the plant and uses PID- and I-controllers. Formulas
for calculation of plant’s coefficients using plant’s input
and output are given. Relations of identification errors
with frequencies of test signal are investigated and these
frequencies are determined. The method of self-tuning
of amplitudes of test signal with the specified influence
coefficient of test signal is given. To provide the correct
stabilizing process after the switching time moment in-
stead of PID-controller the I-controller is implemented in
the case on unstable behavior. On the developed method
the so-called ST-PID-1 controller is realized. The results of
experimental investigations are demonstrated effectiveness
of ST-PID-1.
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Appendix A. PROOF OF ASSERTION 3.1

Eliminating W
[i]
c from (16) and noting that W

[i]
p (jωk) =

α
[i]
k + jβ

[i]
k , (k = 1, 2), we obtain the following relations

α
[i]
yk + jβ

[i]
yk = (α[i] + jβ[i])(α[i]

uk + jβ
[i]
uk),

k = 1, 2, i = 1, 2, ..., N.

Solving these relations with respect to α
[i]
k , β

[i]
k (k = 1, 2)

we get relations (17).

Appendix B. PROOF OF ASSERTION 3.2

In fact, from the frequency transfer function of the plant

wp(jωk) =
kp(cos ωkτ − j sinωkτ

1 + jTωk
= αk + jβk, k = 1, 2,

(B.1)
follows

kp cos ωkτ = −Tβkωk + αk, (B.2)
−kp sinωkτ = Tωkαk + βk, k = 1, 2.

Eliminating the time delay, we obtain
k2

p − (α2
k + β2

k)ω2
kT 2 = α2

k + β2
k, k = 1, 2.

Solution of above equations gives (18.a) and (18.b). In
order to obtain the time delay, we divide second equation
in (B.2) by the first equation, it gives

tanωkτ =
Tωkαk + βk

Tωkβk − αk
, k = 1, 2. (B.3)

If we assume that the frequency of test signal is chosen so
that condition (18.d) is satisfied, then the solution (B.3)
for k = 1 gives (18.c).

Appendix C. PROOF OF ASSERTION 3.3

After transformation (20), we have

∆T = −
ν( 1

ω2
1

+ T 2)

1 + ν
, (C.1)

where

ν =
2β1δβ + δ2

β

(α2
1 + β2

1)ω2
1 − (α2

2 + β2
2)µ2ω2

1

.

Expression (B.1) gives following equations

β1 = −kp(Tω1 cos ω1τ+sin ω1τ)

T 2ω2
1+1

,

α2
k + β2

k = k2
p

T 2ω2
k
+1

, k = 1, 2,
(C.2)

Substituting (C.2) into (C.1) we obtain

∆T 2 =
δβ [δβ(T 2ω1 + 1

ω1
)− 2kp(T cos ω1τ + sin ω1τ

ω1
)]T1Tµ

ω1[k2
p(µ2 − 1) + δβ(2kpTc − δβT1)Tµ]

,

(C.3)
where
T1 = T 2ω2

1+1, Tµ = T 2µ2ω2
1+1, Tc = Tω1 cos ω1τ+sinω1τ.

Then calculate the limit
lim

ω1→0
∆T 2 = ∞, (C.4)

which shows that error ∆T 2 become unacceptably large
when ω1 → 0.

Appendix D. PROOF OF ASSERTION 3.4

It seen from (C.1) that quantity ∆T 2 is unacceptably large
when ν = −1. This is equivalent to the following equality,
with taking into account (C.2),
(2δβkpTc − δ2

βT1)Tµ

k2
p(µ2 − 1)

= −1, Tc = Tω1 cos(ω1τ) + sin(ω1τ),

T1 = T 2ω2
1 + 1, Tµ = T 2µ2ω2

1 + 1.

It gives

δβ1,2 = kp
TcTµ ±

√
Tµ(T 2

c Tµ + T1(µ2 − 1))
T1Tµ

,

where δβ1 and δβ2 there are always.

Appendix E. PROOF OF ASSERTION 4.1

Consider the frequency loop transfer function of the sys-
tem (1), (25), (5)

wloop(jω) =
kikpe

−jωτ

(j − Tω)ω
. (E.1)

In order to determine the bound of ki, find the frequency
of the ultimate point (point of intersection Nyquist curve
with real axis) from the following equation

Im [wloop(jωu)] =
kikp(Tωu sinωuτ − cos ωuτ

(T 2ω2
u + 1)ωu

= 0,

(E.2)
it is gives equation (28). Unique solution of equation (28)
could be found in range (29).

The bound of ki is determined from the inequality

Re [wloop(jωu)] = −kikp(sinωuτ + Tωu cos ωuτ)
(T 2ω2

u + 1)ωu
> −1,

(E.3)
it gives

0 < ki <
ωu

kp sinωuτ
. (E.4)

Denote l
.= ωu

sin ωuτ and find

lm = min
τ≤τ≤τ

T≤T≤T

l, under condition (28). (E.5)

In this case expression (26) is given by (E.4).
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