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~ Abstract. The plants with the uncertain coefficients in the presence of +the bounded
“ disturbance are considered. The direct method of the frequency adaptive control is

developed for the nomminimum-phased plants.

The frequency adaptive contro! bases

oneself upon the frequency domain parameters which are the signals of the Fourier
filter outputs. The experimental determination of these parameters is possible if ‘the

plant unstability degree estimation is

known. The approach to this estimation

determination is given and its convergency is proved.
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1. INTRODUCTION

The adaptive control theory evalution may be
divided on two stages.

At the first stage, so-called "ideal case"
(Narendra and Annaswamy, 1986) which supposes that
external disturbances are either absent {Anderson
and others, 1986) or "white noise” (Iserman, 1981}
was investigated. This stage was finished in 1980.

At the second stage the more real case is
considered. In this case external disturbances
_ are any bounded functions.

S0, authors (Narendra and Annaswamy, 1986) have
deduced the disturbance maximal amplitude for
which the processes in the model reference adapti-
ve system are bounded. Other papers of this direc-
tion has been refered by Ortega and Tang (1989).

The new method based on the recurrent targetal
inequalities was supposed by Fomin, Fradkov and
Jakubowich (1981), Jakubowich (1988).

The different approach originated from the notion
the freguency domain parameters was given by
Alexandrov (1989, 1991a). These parameters are
easy determined with the experiment as the Fourier
filter outputs. It was shown that the filter
signals convergate to these parameters for the
wide class of bound disturbation. Using this fact
the direct method of the frequency adaptive
control for the minimum-phase plants was derived
by Alexandrov (1991a).

The aim of this paper is the development of this
approach for the nonminimum-phased plants.
2. PROBLEM STATEMENT

The Model of the Control Plant

Consider the completely " controllable plant
described by the equation

{n-1) -
b + ... =
+d1y+du_v

n- 1"

i 7
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= qu + ... kcu + muf + ... 0+ mof (1)

in which y{t) is the measured output, u(t) is the
controlled input, f(t) is the external distur-
bance.

The coefficients d_ and kj (i«0,n-1, j=0,y) of the
differential equation (1) are unknown.

The bounds of the coefficient m, and the least

-
root estimation s of polynomial m(s)=musu+...+m0

with the uncertain parameters are given

"
im | <m, (2)

Isl <87, s=m1n(lsll,....isn|}, (3)

where Ei(i-TTE) are the roots of polynomials
L3

m(s), LR and s. are the given numbers.
The external disturbance is any bounded function
*
If(H) <f, . (%)

(where f is the specified number) which may be
represented as

g R .

£(t)= Y 8%sin w't + } 8% cos v t, (5)
im] : * i=1 3 J

where numbers 6?, 5° (i=1,7_, j=1,12), and

mf(i=1.max(7l,12)) are unknown, however

2! ¥z .
T 185+ 1851 < f . (6)

i=1 jel

The Control Problems

We shall search for an equation of a controiler in



the form

.. +ggur yinty

(n-1)
u "t R

g Q)

n-1 +r0y’

in which g, and r, (i, j=0,n-1) are the searched

coefficients.

Problem 2.1 (Problem of the
control).

accurate adaptive

such that the
requirement to

Find the controller coefficients
system (1) and (7) satisfies the
accuracy

Iyl sy, tzF (8)

where y‘ is the specified number, t is some time
moment. A

3. THE CONTROL FOR THE KNOWN PLANT
COEFFICIENT

Modal Countrol

If the coefficients d, and k  (i=0,n-1, j=0,7) are

23
nown then the algorithm of the modal control
consists of the following steps:

Step 1. Compose the identity

d(s)g(s)-k(s)r(s)=8(s). )
Step 2. Check the coefficients by the equal
degrees of symbol s in the right and left parts of
this identity and form of the next system of
linear algebraic equations

n ¥ D
Ldg _i~lzoklra_l= 8, (a=0,20-1) (10)

iz

St ep 3. Solve system (10). As the plant (4%

is completely controllable and the degree of
polynomial r{s) less than the degree of
polynomial d(s) then the solution of system (10)
exists, and it is unigue (Jakubowich, 1988;
Wolovich, 1974).

The Accurate Control: Minimum-Phased Plant

We shall find the coefficients of the controller

(7) for the minimum-phased plant (in which k{s)
is Hurwitz's polynomial) using the identity

d(s)g(s)-k(s)r(s)=x(s)k(s)w(s) (11)
where

- n ~ n-1t - - >

w(s)=s" + p s +ooe ty =Y {]ETis+1),

ix

n . (12)
i T;‘pu =1 T]>0 (i=1,n);

i=1

r(sy=(zs+1)™" 77, po. (13)
Assertion 3.1 If the coefficients of the
polynomial y(s) satisfy the next conditions

-~ m;f-

B2 —— (14)

L8

T 2-— (i=L,a), (15)

! s

n 1

nNrt=—;z ' (16)
imod 1 ~

wﬂ n T:
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T is sufficiently small number, then the system

(1), (7) with the controller which is found from
the identity (11) satisfies the requirement (8) *o
accuracy- A

Proof. The measured output y(s) connects with the
external disturbance as

ys)=—2E88ES)  gr. an
x(s)k(s)y(s)
Let t=0. Then the identity (11) has the obvious
solution ) .
g(s)=k(s}, r(S)=d(s)-E(s}. (18)

We substitute these expressions in (17) and obtain

r.n(_s) f(S) =

y(s) =
p(s)
ol v [+ ¥4 ?/2 2 \‘5,\\5, (19}
LN .ﬂl(Tis+1)[—|l(Tis +2T £ s+1)
1= =
| = f(s), a1+2a2=a.
Y M (T s+1)
imt

The unequality (3) means that

izl

=1 1'%

. v v VY
g:—z max {Tl,;..,T“‘,Ti,...,Tuz} (20)
and therefore the condition (17)
gives
v Vv
v @2V, sz VYLt
MUT o +1) (T, (o' )+ 2T £ (Ju )+t
max it | jxt ! <t
£ a
05w < n(Tjjmr”)
i=1
(21
If the external disturbance has the form {6) then
taking account (19) and (21} we derive an
expression of the output for the steady state
[
m J1 32 m N »
lycey i< | ol K{ laj|+{ la'zl ls 2 fsy. (22)
¥y
0

o

For sufficiently smail t#0 the solution of the

identity (11) has the form
g(s)=(x(s)+0"(s))k(s) . T(s)=d(s)~w(s)+0’(s) (23)

where 0'(s) and o"(s) are the polynomials of the
degrees n-y-1 and n-1 respectively.

Substituting (23) in {17) we obtain a expression
which is near to (22) since the coefficients of
the polynomials (23) are depend on T continuously
(Alexandrov, 1989). A
PID-Controller

Let f(t) is step disturbance: f(t):fl for tzt and



f{t)=0 for t<tu' The requirement (B) to accuracy
is fulfilled if

a) the coefficient ;o in the polynomial {12)
satisfies unequality (14),

b) T, (i=1.n) are aui positive numbers,

c) Tt is a sufficiently smail number.

However, other way of reaching of the objective

{8) for the step disturbance exists. The basis of
this way is PID-Controller.

To build such controller we find modal contrel
for the next "widened plant”

d(s)y=k(s)um(s)f, ?=y» (24)
which may by rewritten as

d(s)y=k(s)usm(s)f, (25)
where

d(s)=d(s)s. (26)
If kD#O then "plant" (25) is the completely
controllable. The identity (9) has now the form

(s)g(5)-k(s)T(5)=8(s), @
where 5(s) is Hurwitz polynomial of degree 2n.
‘Selving this identity we derive the coefficients

of an equation g(s)u=r(s)y. Then the searched PID-
Controller is described as

sgis)u=r(s)y. (28)
The output of plant with this controller
represents in the view

sg(s)m(s)
y(s) = f(s) 29
(s)
from which follows that lim y(t) = 0.
1@
4. FREQUENCY DOMAIN PARAMETERS

Nations

Definition 4.1 If the plant (1) is unstable then
a number

s* = max {Re s‘,..., Re sn}, (30)

where s {i=1,n) are the roots of the polynomial
.

d{s) are called the wunstability degree of plant
{1). 'y
Let c0>0 denotes the estimation of an upper
boundary of the unstability degree:

~ oz st 11y

Q

Definition 4.2 A set of the 2n numbers
akskew(1+]uk). Bk=Imw(l+]uk). (k=1.n), xzc0 (32)

are called the frequency domain parameters.

Here w(s)=k(s)/d(s) is the transfer function of
plant (1), w_ (k=1,n) are some  positive numbers

which are below called the test fregquences. 'y

49

The estimation c, is supposed to be known in this

definition. Such assumption may be canceiled as it
is shown in section 6.

The_Txperimental Determination

determination of
consists in the

The method of the experimental
the frequency domain parameters
following.

Apply to the input of plant (1) the test signal

n
uzert ¥ p sin(w +¢ ), e, (33)

k=1

where o , v _and @ (k=1,n) are given numbers.

The y(t) of the plant
multiplication of it by e”**

signal output after

is applied to the

input of the Fourier filter {Eykhoff, 1974). Its
outputs give the estimations of the frequency
domain parameters
- 2 ot Ly —
a"(t0)=m) {y(t)e Sln(&)kt+¢k)dt (k=1,n),
° (34)
. ) LDO|.¢ e _
Bk(t¢)=m {y(t)e CDS(&)ut+¢u)dt {k=1,n).
° (35)

Theorem 4.1. (Alexandrov, 1991a) The estimations
of the frequency domain parameters of plant (1) in
the presents of disturbance (5) have the next
property

lim uk(t°)=ak, lim Bk(to)=ﬁk. k=(1,n) & (36)

This property is well known (Eykhoff, 1974) for a
stable plant. In fact, if we apply to the plant
{1) the harmonic signal u=1-sinukt then its output

has the form

y(t)=a sin © t+8 cos w t+x(t). 37

where »{t) is vanish function (11@ x(t)=0).

to the Fourier filter we
and Bk if the time t is

sufficiently large. If f{t)#0 then the described
experiment may give the shift of the estimations.

Applying this signal
obtain a numbers o,

In case when in (5) m?#wk (i=1,max(¥,,7,)" k=1,m)
s

this shift equals zero. However, this unequality
can not be verified as wf (i=1,nax(1‘,12)) are
unknown.

A few of the methods may be proposed to obtain the
unshifted estimates of frequency domain parameters
of the stable plants. So, the test signal (33) for

A>0 may be used for such plants. Other two methods
have peen described by Alexandrov (1991a).

5. FREQUENCY ADAPTIVE CONTROL

The Accurate Control: Minimum-Phased Plant

Solve the problem 2.1 for the minimum-phased plant
which is specified by the frequency domain

parameters o and B, (k=1,n).

For this objective we divide the identity (11} by
the polynomial d(s) and derive the expression



g(s)-v(s)r(s)=W(s)X(S);(s). _(38)
which for s=1+jwl (k=1,n) has the form
n-t X n-1 i
L2, +jo ]’ - (a+38) T r D+jed” -
i=0 i=0
(39)
2n-3-1 X _
= (@ +iB) Ty Do)’ (k=I,m),
i=0

where v, (i=1,2n-y-1) are the coefficients of the
polynomial x(s)y(s).

The system (39) contains the 2n linear algebraic
equations for calculating the real coefficients of
controller (7). It may be rewritten in the form of
two subsystems

n=-1 n-1
l)‘Zupi(wk) g, -ifbluhpi(wl)-ﬂkui(uk)] r.=
(40)

2n=-Y=1 —_—
=‘foﬁxkpi(uk)'ﬂk#i(wkjf v, (F=I-n)

n-1 n=-1

-,ioﬂ'(uk) gi _ifn[“kﬂl(uk)+ﬂkpi(mk)} r; =
2n-Y=1 —_— (a1
=I§0[ukpi(wk)+ﬂkp‘(uk)] v, (k=1,n)

where pi(uk)=Re[1+juk]i.yi(uk)=1n[k+juk]i (G=Tom).

Theorem 5.1 (Alexandrov, 1989) If the plant (1) is
completely controllable then system (40}, (41) has
the solution which is unique and it coincide with
the solution of system (10) for arbitrary W,

(k=1,n) and W . A

And so, the direct algorithm ‘of the frequency
adaptive accurate control of the minimum-phased
plant consists from the next steps

Step1l. Find the estimations of the frequency

domain parameters & (t,) and ﬁk(tm) (k=T71).

The time t
€ )

from the inequalities

of the experiment may be determined

ink(twj-a*(tm-ﬂt!SE. (ﬂk(tm)-ﬁk(to-btlse (k=1,n}

(42)

in which ¢ is sufficiently small number, At is
some number.

Step 2. Solve the system (40), (41). The
numbers o and Bh (k=1,n) are substituted by
theirs estimations.

S t e p 3. Close the plant (1} using the

controller (7) with the coefficients which were
derived on the step 2.

The time t of the attainment of the control
target (B) consists from the intervals:
t = tQ +t o+t {43)

where t is a time nf the s&stem (41), (42)

solution, tr is the response time of the system
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. M.

PID-Contreller for Nonminimum-Phased Stable Plant

Consider the case when the plant (1) is asvmpto-
tical stable {d(s) is Hurwitz polvnomial) but it
is  nonminimum-phased (k{(s) is not Hurwitz
polynomial). Let too the external disturbance is
the piece-constant function with the intervals of

constancy more then t.

PID-Controiier which assure the accurate controf
is built by the following wayv.

Let in the identity (27)

B3(s)=d(s)w(s) (44)
where w(s) is some Hurwitz polynomial of the
degree n. Dividing this identity by sd(s) we

obtain for s=k+jmk (k=1,n) the system of equations

T g Idol’ - (@ 43B) LT Dejol’ =

i=0 i=0
(45)
n .
- A i ——
= W Z wi fl-f-j(dk} (k=1,n+1},
k i=D
in which numbers &k and Ek (k=1,n+1) are
calculated with emplovment the estimates of the
frequency domain parameters as
o A+B W - W, +AB
a = —55——5—5, Bu= —%—33——1 (k=1,n+1) (46)
AT+ AT+
k %
These formulae follow from the expression
w(s)=w(s)/s.
&. EXPERIMENTAL DETERMINATION OF CD
The estimation of +the wunstability degree is

usually unknown but it may be determined as the
result of the experiments.

The idea of such experiments has been described by
Alexandrov (1991b). It consists in following. The
At
test u(t)ze !
positive number) is applied to the plant

~ By Ut
the function y“’(t):y(t)e !

is

(1).

sinwt some

If

signal (where l‘

increases then we
At
have to apply the signal u(t)=e Z sinwt (where
12 > 11) and tp repeat the experiments tili F]
At

number A". for which the product ;'")(t)zy(t)e N

is bounded function, will be obtain. The number ku

is adopted as co.

Such method find difficulty in doing the
implementation because the time of every from this

experiments is restrictly. It is connected with
the natural bounds for y(t) and u(t):
ly(t)}!l < qy, fu(t)l < q, (a7

where a, and q, Aare the given numbers which

characterize the saturation of the measuring and

drive devices.

Therefore every experiment is ended in a moment

£ (4=T,N) when is fulfilled one from the
e

equalities



{i) (i)

it ) l=q or lu(t ") l=q (i=1,n) *8)
To increase the test times we will apply the

signal u=psinut (where p is constant) to plant (1)
-t

functions v''’ '

and estimate of the (t)=y(t)e
(i=1,N) rising » as earlyv.

Theorem 6.1. It exists the value ) such that the

nlant cutput which is excited by the test signal
u(t)=psinwt satisfies the condition
=
Iy(t)e ™t 587, t>t, (49)

where 6* and t. are the arbitrary numbers (for

Ed 3 —
example: 8= y‘. t < t:'), i=1,N). A

The proof is given by the appendices.

7. EXAMPLES

Example 7.1.

Consider the plant (Fomin, Fradkov and Jakubowich,

1981)

v o+ doy = klu + kou + £. (50)
let the following assumptions are valid:

a) it is minimum-phased plant,

b) its instability degree estimation C°=6,

¢) the external di;turbance satisfy the restrict
ion 1f(t)! s 10.

Find the controller .

giﬁ + gou = rli +ry (51)
such that

I¥y(t)l s 0.2, t>E (52)
The numerical experiments were performed. The

coefficients of the pilant (50) were d0=-16, kﬂ=30,
k1=5 and external disturbances f(t)=10sin9t. The
experimentor was not informed about these data.

These experiments with the test frequency (.}]:35'I
and m2=6s" under the condition A=6 have given the
of the frequency
varameters « =0.855, B =-1.4, a,=0.285, B,=-0.851.

next estimations domain

Using (14) we have found w0=50 and adopted wl=14.

Then the eaguations (40), (41) were solved and the
following coefficients of the controller (51) were
derived g1=4.98. gD=27.6, r1=—14.4, r0=-63.

The simslation results of the svstem (50), (51)
have shown that its steady-state error equals
0.0746. Therefore the requirement (52) to accuracy
has been fulfilled.

Example 7.2.

The plant to be considered is described by the
following transfer function (Saad, 1991)

(Ts-l)mﬁ
wi(s) = k

= > (53)
(Ts+1) (s +2ﬁuus+wo)

5 1

This plant is asymptotical stable (T>8, £>0, w >0)
but it is nonminimum-phased.

Find the PID-Controller
(8.5748_542 s+8_)Su=(F_s 4T _S 4T s4r )(y+r’) (54)
3 2 1- "o 3 2 1 0

(in which r* is the step set-point sequence) such
that, beginning with a moment ¥, the tracking
error becomes equal zero. This requirement has to
be fulfilled for the step external disturbances
which satisfies the condition if{(t)| < 5.

As in the example 7.1 were performed the numerical
experiments for T=1, 0 =15, k=3, E=1.

The experiments with the test frequency o.=1,

u2=5. u3=10. u‘=20 have given the estimations
u1=0.4. Bl=2'96' a2=2.66.

B;

BZ=—0.65. u3=1.26.

-1.69, a,=-0.19, §‘=-1.06.

Then the frequency domain parameters « and Bu

(k=1,n) were calculated on the formulas (46).
Adopting ®(s)=(0,1s+1)* we have solved the
equations (45).

The next coefficients of controller (54) were
obtained g =1.47, g,=0.0062, g,=0.0056,
E3=o.5a-10". F0=0.34, Fl=0.36, F2=o.027,
T =-0.485-107°,

3

The simulation of the system (53), (54) has shown

that the process in this system attains the wished
value y=r.=10 in time 4T.

Remark. The examples 7.1 and 7.2 have been solved
with CHAR (special PC software).

B. CONCLUSION

The way of the experimental determination of the
plant unstability degree estimation has been
given. Convergency of this way has been proved.

Direct algorithm of the frequency adaptive control
to be proposed by Alexandrov (1991a) for the
minimum-phased plant has been now developed for
nonminimum-phased plant. The adaptive PID-
Controiler algorithm for the stable plant has been
derived.
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APPENDICES

The Proof of the Theorem 6.1

Convert the equation (1) to the next form

f = Px + bu + ¥f, y=lTx, {A.1)

where x(t) is fhe n-dimensional vector, b, yp and 1
are the n-dimensional vectors and P is matrix nxn.

disturban
ce (5) is single-frequency: f(t)=ésino’t, ISISf .

Let, for simplicity, that the external

Then the plan output is excited by this disturban
ce and the test signal u{t)=psinwt. It has the
form (Alexandrov, 1989):
y(0)=1"x(0)eP -1 et (InBCju)+TmB, (30 ) 4u(t) (A.2)
in which

u(t)=p[Rew(jw)sinut+Imw{ jw)coswt]+

r £ £ r (a.3)
+6[Rewf(ju )sin w t+Im wr(ju )Jcos w t)
where
B(s)=(Es-P)'b, B (s)=(Es-P) 'y, (A.4)
-1 , 1 _ m(s)
w(s)=1'B8(s), w (s)=1"B (s)= ¥ - (A.5)
The expression (A.2) mayv be rewritten in more
detailed view as :
o % 0 ” o, agt
¥(t) = T eisine, + o cosw e Ty opn, (A.6)

g1

where the numbers c: and c: (g=1,n) depended on
x(0),  InB, (ju) 126 (30D

a3+jw3=sq (g=1,n) are the roots of the polynomiai

+he vectors and

det(Es-P). The roots is supposed to be simple.

Consider the.function now

- Aa ) 5, (ag-A A
v(t)=v(t)e” =Z(cssinmq+cqcos mq)e(aq' Yt tu(t)
axt (A.7)

(¢4

Taking info account inequality
() s plw(ie) | + £ 1w (Go') (A.8)
we obtain
~ D ag-n
lv(t)d s T eVt et 4 1et1) +
ast q q
(A.9)

+ e plw(e) ! + f'lwr(jwr)l.

It is obvious that for the arbitrary values 8' and

N
t exists the number X which assures the
fulfilment of unequality
n 0 x .
T @I e 4 1ty 4 e M oI | 4+
an1 q q
(A.10)

= . T ®
+ £ v (Ju)1) s 8

The proof for the repeated roots of the polynomial
det(Es-P) is similarly.




