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Abstract—We propose a method of finite-frequency identification for stable objects with delay
in the presence of an unknown external disturbance and measurement errors. This method
uses a test signal which is the sum of at most as many harmonics as the number of coefficients
in the object. In order to uniquely determine the delay value, we propose an approach that
uses a test signal in the form of a product of a sinusoidal and exponential function. Based
on this approach, we construct two identification algorithms: one for separate identification of
coefficients and the delay value, another for their joint identification.
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1. INTRODUCTION

At present, control theory features many different methods for identifying objects defined with
differential equations. These methods can be somewhat superficially divided into two categories
depending on the assumptions regarding measurement errors and external disturbances that act
upon the object.

Methods from the first category deal with objects that are subject to stochastic disturbances
(e.g., white noise with known statistical characteristics). They represent different variations of the
least squares method and stochastic approximation methods [1].

The second category includes methods that deal with unknown bounded external disturbances
(whose statistical characteristics are unknown); this category includes randomized algorithms [2]
and finite-frequency identification [3, 4].

The identification process may be either passive or active. In passive identification, the measured
input of an object has the meaning of a controlling influence that depends on control objectives
and is unrelated to object identification. Identification may be impossible for such an input. In
these cases, one can try active identification that adds a signal to the input influence. Such a signal
is called a test signal.

The finite-frequency identification method has been developed for active identification. The test
signal is a sum of harmonics whose number does not increase the value of the object’s state vector.
Amplitudes and frequencies of this signal significantly influence identification accuracy, so one must
choose them properly. In [5], the authors analyze the influence of frequencies and amplitudes of
the test signal on identification accuracy and propose algorithms for tuning these frequencies and
amplitudes. These algorithms ensure that the test signal influences the object’s output in a very
small way as compared to the influence of disturbances and noise.

One advantage of finite-frequency identification as compared to other existing methods is that
despite unknown type and intensity of the external disturbance, it converges provided it does
not contain components with test signal frequencies. In the case when an external influence or
measurement noise do contain components with test signal frequencies, we can use the algorithm
with successive pairs [6], where identification is done in two stages. On the first stage, we send a
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polyharmonic test signal to the object, and then the object receives the same test signal but with
the opposite sign. Then we add identification results together and thus compensate the influence
of external disturbances.

Besides, identification problems for objects with delay are also often considered. A survey
of identification methods for such objects, mainly for random external disturbances and noises, is
given in [7], where the authors also give recommendations on how to choose a suitable identification
method. An adaptive observer able to estimate the object’s coefficients and the value of delay is
proposed in [8, 9]. In [10], two-stage identification is proposed. On the first stage, one uses a test
signal which consists of a single harmonic or a sum of several harmonics. On the second stage, one
uses identification with a ladder-like test influence.

In this work, we develop the finite-frequency identification method for objects with delay. Un-
like [11], in this work we propose an approach that can uniquely determine the delay and construct
the corresponding identification algorithms based on this approach. Tuning the frequencies and
amplitudes of the test signal is in many ways similar to [5], and we do not consider it separately in
this work.

The paper is organized as follows. In Section 2, we give the problem setting. Frequency identi-
fication equations with which we determine estimates on object coefficients are given in Section 3.
In Section 4, we show an approach that can uniquely determine the delay. Conditions for identi-
fication convergence are given in Section 5. Sections 6 and 7 deal with identification algorithms,
and Section 8 illustrates our results with an example.

2. PROBLEM SETTING

Consider a fully controllable asymptotically stable object with delay defined by equation

dny
(n)(t) + · · ·+ d1ẏ(t) + y(t) = kmu

(m)(t− τ) + · · · + k0u(t− τ) + f(t), (1)

where y(t) is the object’s output, u(t) is the control input, τ is the delay (τ > 0); the piecewise
continuous function f(t) is an unknown bounded disturbance:

|f(t)| � f∗,

where f∗ is some unknown positive number.

Coefficients dν , kμ (ν = 1, n, μ = 0,m) and the delay τ are not known. Roots of the polynomial
k(s) = kms

m + km−1s
m−1 + · · · + k1s + k0 have negative real parts. Here and in what follows s

denotes the Laplace transform.

The measured object’s output has the form

ỹ(t) = y(t) + η(t), (2)

where η(t) denotes measurement noise which is an unknown piecewise continuous bounded function.

The test signal is a sum of harmonics

u(t) =
l∑

i=1

ρi sinωit, (3)

where the number of harmonics equals l = n +m+ 1; amplitudes ρi and frequencies ωi are given
positive numbers (ωi �= ωk, i �= k, i = 1, l, k = 1, l).

Coefficients of object (1) often are piecewise constant functions. If the duration of the period
when they are constant exceeds identification time, then the exposition below also relates to such
objects.
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The purpose of identification is to find estimates τ̂ of the delay and d̂ν , k̂μ (ν = 1, n, μ = 0,m)
of the coefficients for object (1) such that the following conditions:

{ |d̂ν − dν | � εdν |dν |, if dν �= 0, or |d̂ν | � εdν , if dν = 0

|k̂μ − kμ| � εkμ|kμ|, if kμ �= 0, or |k̂μ| � εkμ, if kμ = 0,
(4)

hold for the relative identification accuracy, where εdν and εkμ (ν = 1, n, μ = 0,m) are given positive
numbers.

3. IDENTIFICATION OF OBJECT COEFFICIENTS

To find object coefficients, we can get equations that are independent on the delay. To do so,
we write the object’s transition function (1) as

wτ (s) = w(s)e−τs =
k(s)

d(s)
e−τs, (5)

where d(s) = dns
n + dn−1s

n−1 + · · ·+ d1s+ 1.

We introduce the numbers

αi = Rewτ (jωi) and βi = Imwτ (jωi), i = 1, l, (6)

called frequency parameters of the control object (1).

Estimates of the object’s frequency parameters are found empirically with a Fourier filter [3, 12]:

α̂i = αi(t) =
2

ρit

tF+t∫

tF

ỹ(t) sinωit dt and

β̂i = βi(t) =
2

ρit

tF+t∫

tF

ỹ(t) cos ωit dt, i = 1, l,

(7)

where tF is the time when filtering starts, and t is its duration.

Conditions regarding the convergence of filter outputs to true frequency parameters of object (6)
are shown in Section 5.

The following equations relate frequency object parameters αi and βi (i = 1, l) with object
coefficients kμ (μ = 1,m) and dν (ν = 1, n):

k(jωi)k(−jωi)− (α2
i + β2i )[d(jωi)d(−jωi)− 1] = α2

i + β2i , i = 1, l, (8)

where

k(jω)k(−jω) =
m∑

μ=0

(−1)μω2μk̃μ and d(jω)d(−jω) − 1 =
n∑

ν=1

(−1)νω2ν d̃ν (9)

are even degree polynomials.

These equations are easy to get. To do so, we write (5) as

k(jωi) = wτ (jωi)e
jωiτd(jωi), i = 1, l,
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and then multiply the left- and right-hand sides by the corresponding complex conjugate factors

k(jωi)k(−jωi) = wτ (jωi)wτ (−jωi)d(jωi)d(−jωi), i = 1, l.

Using definition (6), we get (8).

Substituting (9) into (8), we get frequency identification equations

m∑

μ=0

(−1)μω2μ
i k̃μ − (α2

i + β2i )
n∑

ν=1

(−1)νω2ν
i d̃ν = α2

i + β2i , i = 1, l. (10)

The only solution of Eqs. (10) (see [13]) is given by coefficients d̃ν and k̃μ of the polynomials

d̃(s2) =
n∑

ν=1

d̃νs
2ν + 1 = d(s)d(−s) = d2n

n∏

ν=1

(
s− s[d]−ν

)(
s− s[d]+ν

)
,

k̃(s2) =
m∑

μ=0

k̃μs
2μ = k(s)k(−s) = k2m

m∏

μ=1

(
s− s[k]−μ

) (
s− s[k]+μ

)
,

(11)

where s
[d]−
ν and s

[d]+
ν (ν = 1, n) are roots of the polynomial d̃(s2) with negative and positive

real parts respectively. Similarly, we denote the roots of the polynomial k̃(s2) by s
[k]−
μ and s

[k]+
μ

(μ = 1,m).

Since roots of polynomials d(s) and k(s) have negative real parts by definition, their values will

be given by s
[d]−
ν and s

[k]−
μ (ν = 1, n, μ = 1,m) respectively, and then

d(s) = dn

n∏

ν=1

(
s− s[d]−ν

)
and k(s) = km

m∏

μ=1

(
s− s[k]−μ

)
. (12)

Thus we can construct the following algorithm for finding the necessary object coefficients.

Algorithm 1.

1. Construct the following even degree polynomials:

d̃(s2) = d̃ns
2n + d̃n−1s

2n−2 + · · ·+ d̃1s
2 + 1,

k̃(s2) = k̃ms
2m + k̃m−1s

2m−2 + · · ·+ k̃1s
2 + k̃0,

by solving Eqs. (10) with frequency parameters replaced with their estimates.

2. Find the roots s
[d]±
ν (ν = 1, n) and s

[k]±
μ (μ = 1,m) of polynomials d̃(s2) and k̃(s2) respectively

and, taking only the ones that have negative real parts: s
[d]−
ν (ν = 1, n) and s

[k]−
μ (μ = 1,m),

construct the desired polynomials (12).

4. DELAY IDENTIFICATION

We introduce the numbers

φi = Rew(jωi) and ψi = Imw(jωi), i = 1, l, (13)

where w(jωi) = k(jωi)/d(jωi).

Expression (5) implies that

ejωiτ =
w(jωi)

wτ (jωi)
. (14)
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Using definitions (6) and (13), we get

cosωiτ =
αiφi + βiψi

α2
i + β2i

and sinωiτ =
αiψi − φiβi
α2
i + β2i

, i = 1, l, (15)

which implies the following expression for finding the delay:

τ(r) =
1

ωi

[
arctan

(
αiψi − φiβi
αiφi + βiψi

)
+ πr

]
, i = 1, l, r = 0,±1,±2, . . . , (16)

which gives an infinite number of solutions.

To find the unique delay value, we apply the following test signal to the object:

uλ(t) = ρλe
λt sinωλt, (17)

where ρλ and ωλ are given positive numbers and λ is a given number.

The object output yλ(t) excited by this input will be multiplied by e−λt and serve as waster
from the Fourier filter. Outputs of this filter

α̂λ =
2

ρλt
λ

tλF+t
λ

∫

tλ
F

e−λtyλ(t) cos ωλt dt and β̂λ =
2

ρλt
λ

tλF+t
λ

∫

tλ
F

e−λtyλ(t) sinωλt dt (18)

(where tλF is the time when filtering begins, and t
λ
is its duration) are estimates of the object’s

transition function for s = λ+ jωλ [13]:

wλ
τ (λ+ jωλ) =

k(λ+ jωλ)

d(λ+ jωλ)
e−(λ+jωλ)τ = αλ + jβλ. (19)

Using identified polynomials (12), we compute

φλ + jψλ =
k(λ+ jωλ)

d(λ + jωλ)
. (20)

Using (20), we write Eq. (19) as

e−λτ (cosωλτ − j sinωλτ) =
αλ + jβλ
φλ + jψλ

(21)

and decompose it into real and imaginary parts:

e−λτ cosωλτ =
αλφλ + βλψλ

φ2λ + ψ2
λ

and e−λτ sinωλτ = −βλφλ − αλψλ

φ2λ + ψ2
λ

. (22)

Adding up the squares of these equalities, we get the following expression:

e−2λτ =

(
αλφλ + βλψλ

φ2λ + ψ2
λ

)2

+

(
βλφλ − αλψλ

φ2λ + ψ2
λ

)2

, (23)

which implies the following formula for computing the delay:

τ =
1

2λ
ln

(
φ2λ + ψ2

λ

α2
λ + β2λ

)
. (24)
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5. IDENTIFYING CONVERGENCE CONDITIONS

To construct convergence conditions for our estimates of frequency parameters αi(t) and βi(t)
with respect to original values αi and βi (i = 1, l), we introduce the following function:

lαi (t) =
2

ρit

t+tF∫

tF

y(t) sinωit dt and lβi (t) =
2

ρit

t+tF∫

tF

y(t) cos ωit dt, i = 1, l, (25)

where y(t) is the “natural” control object output with no test signal at all (3) (u(t) = 0). In
this case, the object can only get excited with an external disturbance f(t), and the measurement
channel contains errors. η(t).

Similar to [3], we introduce the following definitions.

Definition 5.1. An external disturbance f(t) and a measurement noise η(t) are called FF-filter-
able if for given numbers δα and δβ there exists filtering time t

∗
such that

lαi (t
∗
)

αi(t
∗
)
� δα and

lβi (t
∗
)

βi(t
∗
)
� δβ , i = 1, l. (26)

If filtering errors Δαi = αi−αi(t), Δβi = βi−βi(t) (i= 1, l) satisfy limt→∞Δαi = limt→∞Δβi = 0
(i = 1, l), we call external disturbance f(t) and measurement noise η(t) strictly FF-filterable.

To illustrate the notion of FF-filterability, consider the case when f(t) and η(t) can be decom-
posed into Fourier series, and u(t) = 0. Using (2), we rewrite (7) as

αi(t) = α̌i(t) + σαi (t) and βi(t) = β̌i(t) + σβi (t), i = 1, l,

where

α̌i(t) =
2

ρit

tF+t∫

tF

y(t) sinωit dt, β̌i(t) =
2

ρit

tF+t∫

tF

y(t) cos ωit dt,

σαi (t) =
2

ρit

tF+t∫

tF

η(t) sinωit dt, σβi (t) =
2

ρit

tF+t∫

tF

η(t) cos ωit dt,

i = 1, l.

Functions σαi (t) and σ
β
i (t) are caused by measurement noise η(t).

Functions f(t) and η(t) can be decomposed into a Fourier series and can be represented as

f(t) =
n1∑

r=1

ar sinω
f
r t and η(t) =

n2∑

p=1

bp sinω
η
pt,

where n1, ar, ω
f
r (r = 1, n2) and n2, bp, ω

η
p (p = 1, n1) are unknown numbers. If they do not

contain frequencies that coincide with the frequencies of the test signal: ωf
r �= ωi and ωη

p �= ωi

(r = 1, n1, p = 1, n2, i = 1, l), then these functions are strictly FF-filterable. This fact can also be
written as

lim
t→∞

σαi (t) = 0, lim
t→∞

σβi (t) = 0, lim
t→∞

α̌i(t) = αi, lim
t→∞

β̌i(t) = βi, i = 1, l.

If test signal frequencies coincide with frequencies of the functions f(t) and η(t), we get that

lim
t→∞

σαi (t) = εαi , lim
t→∞

σβi (t) = εβi ,

lim
t→∞

α̌i(t) = αi + ξαi , lim
t→∞

β̌i(t) = βi + ξβi ,
i = 1, l,

where εαi , ε
β
i and ξαi , ξ

β
i (i = 1, l) are some positive numbers.
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If the numbers εαi , ε
β
i and ξαi , ξ

β
i (i = 1, l) are sufficiently small, we call functions f(t) and η(t)

FF-filterable.

6. JOINT IDENTIFICATION OF COEFFICIENTS AND DELAY

Since we need different test signals for the identification of object coefficients and delay, we
divide identification into two stages. On the first stage, we supply test signal (3) to the object and
identify only object coefficients; on the second stage, we supply (17) and identify the value of delay.

Joint identification of object coefficients and delay is also possible. To do so, we need to use a
test signal of the form

u(t) = ρλe
λt sinωλt+

l∑

i=1

ρi sinωit, ωλ �= ωi, i = 1, l, (27)

on the object.

To find estimates for frequency parameters, we need to use two filters, (7) and (18), simultane-
ously.

If we choose the number λ with a negative value, the signal with exponential component will
not have a strong negative effect on the identification of object coefficients.

7. EXAMPLE

This example is based on the two-stage identification algorithm.

Consider an object defined by equation

0.7ÿ(t) + 0.8ẏ(t) + y(t) = 0.4u̇(t− 3) + u(t− 3) + f(t), (28)

where the external disturbance is
f(t) = 2sgn[sin(5t)].

Measurement noise η(t) produces random values uniformly distributed on the interval [−0.05; 0.05].

Fig. 1. Test signal.
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Fig. 2. Object output under the influence of the test signal.

Fig. 3. Object output without the influence of the test signal.

Such a noise is possible since the numerical solution of Eqs. (28) was done with its discrete
model with discretization interval h = 0.01.

Test signal:

u(t) = 0.05 sin(0.707t) + 0.075 sin(1.41t) + 0.1 sin(2.12t) + 0.15 sin(2.83t). (29)

For the identification delay, we choose a test signal with frequency ωλ = 0.707:

uτ (t) = 0.1e−0.01t sin(0.707t). (30)

After identification we get the following object:

0.65ÿ(t) + 0.83ẏ(t) + y(t) = 0.32u̇(t− 3.48) + 1.06u(t − 3.48) + f(t). (31)
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Graphs of the test signal and object output are shown on Figs. 1 and 2 respectively. For compar-
ison, Fig. 3 shows the graph of object output without the influence of the test signal, and changes
in the output occur under the influence of external disturbances. Figures 2 and 3 show that the
test signal introduces negligible changes in the output of the object being identified.

8. CONCLUSION

In this work, we have extended the finite-frequency identification approach to objects with
delay. We have obtained identification equations that let us find the control object coefficients
independently of the delay. We have proposed a method for uniquely determining the delay.
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