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Abstract—An adaptive control is designed for a multidimensional system with unknown con-
stant coefficients under bounded polyharmonic disturbances containing an infinite number of
harmonics of unknown amplitudes and frequencies. It uses a very small test signal. The control
aim is to ensure given bounds for the forced oscillations in the output of the system and con-
troller. Adaptation is based on finite-frequency identification of the system and a closed-loop
system. By way of example, an adaptive control of a real physical system is given.
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1. INTRODUCTION

There are several trends in adaptive control under unknown bounded external disturbances.

The first of them is related to reference-model systems. Adaptive controls for such systems
were first designed without regard for external disturbances [1-3]. Subsequently these systems, as
shown in [4], were found to lose stability under the action of external disturbances. Thus there
emerged a large number of papers concerned with the design of adaptive control algorithms for
stabilization in these and other tracking systems under external disturbances. Typical results of
this trend are outlined in [5, 6]. This approach can be illustrated with the example of [5], where an
LQ-optimization problem is solved for a system with unknown coefficients [5]. To solve a problem
expressed as Riccati equations, the true coefficients of the system are replaced by their quasi-
estimates found by the gradient method. They may considerably differ from true coefficients since
the identification problem has no solution under unknown external disturbances (if the test signals
described below are neglected). Therefore, quasi-estimates are possible values for the coefficients
consistent with the input and output of the system. Adaptation process is shown to converge to
some unknown tracking error. Other adaptation methods without the use of quasi-estimates are
described in [7].

The method of recurrent aim inequalities [8, 9] laid the foundation for the second trend. In this
trend, adaptive control aim is expressed as constraints (margins) for the deviation of the steady
output of the system. The solution of the {;-optimization problem [10, 11] is extended in [12, 13] to
a system with unknown coefficients. In these papers, quasi-estimates are determined by a special
gradient method for the deviation of the steady-state output to be minimal. It is not easy to realize
the adaptive control algorithm numerically. This is the cost to be paid for the best adjustment
accuracy it provides under unknown coefficients and arbitrary bounded external disturbances.

Therefore, many papers restrict external disturbances to a narrower class. An unknown constant
disturbance is used in [14]. The adaptive control algorithm for this case is simple in realization.
In [15], external disturbance is defined by a piecewise-constant bounded function with a known
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A FREQUENCY ADAPTIVE CONTROL 1109

frequency range. Adaption aim is a given characteristic polynomial of a closed-loop system (which is
also used in [16, 17], where the external disturbance is an arbitrary bounded function). Coefficients
of the system are estimated with an adaptive observer, and the control law (which is formed from
these estimates and state vector estimate) contains a test signal.

In frequency adaptive control [18], as in the second trend, control aim is the magnitude of the
steady-state output of a system. External disturbance is the sum of an infinite number of harmonics
of unknown amplitudes and frequencies and sum of amplitudes bounded by a known number. The
system and a closed-loop system are identified by the finite-frequency identification method [19],
in which a system or a closed-loop system is excited by a test signal-——sum of harmonics, whose
number is not greater than the dimension of the state space of the system or the closed-loop system.
The frequency of the test signal must not be the same as that of the external disturbance. This
condition somewhat narrows the class of external disturbances, and is verified during identification.

In the adaptation methods described above, the controller is continuously adjusted, whereas
controller parameters are adjusted after large time intervals (adaptation intervals) in frequency
adaptive control for guaranteeing the linearity of the model of the system on these intervals (while
in other methods, the model is nonlinear and conditions cannot be easily found such that the
input and output do not take unduly large values during adaptation). Therefore, the adaptation
algorithm can be numerically realized without any serious difficulties [20].

In this paper,’ results of [18] are extended to multidimensional systems. Here we encounter
two difficulties. This first is the determination of a relation between the steady values of adjusted
variables and weight coefficients of the Hy,-norm of the transfer matrix of the closed-loop system.
The second is the determination of adaptation termination conditions. Termination is obviously
implemented by comparing the matrices describing the system at the current and preceding adap-
tation intervals. For this purpose, these matrices must be uniquely represented. Such a comparison
is possible only if matrices are represented in canonical form, which in this paper is taken to be the
Luenberger column observable canonical form [22].

In Section 2, we formulate the adaptive control design problem and solve it in Section 3 for
a system with known coefficients. Sections 4 and 5 are devoted to identification of a system
(independently and in a closed-loop system, respectively). In Section 6, we state conditions for the
adaptation process to converge. In Section 7, we describe an adaptive control for a gyroplatform.

2. FORMULATION OF THE PROBLEM

Let us consider the linear stationary system described by the equations

X, = Apxp + By(u+f), y=z=0Cpx,, t>t, (1)
Xe = Acxe + Bey, u=Ccx, (2)

where x,(t) € R" is the state vector of system (1), x.(t) € R™ is the state vector of controller (2),
u(t) € R™ is the control vector, y(t) € R" is a vector of measured variables, z(t) € R" is a vector
of adjusted variables, f(t) € R™ is a vector of unmeasurable external disturbances—bounded
polyharmonic functions

k=1

! This paper is a revised version of report [21] read at the 15th TFAC Congress in Barcelona.
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1110 ALEKSANDROV, ORLOV

whose frequencies w,{ and phases @i (j = 1,m, k = 1,00) are unknown, and amplitudes f;;, satisfy
the conditions

0o
Zf]gkgf;a J=1m, (4)
k=1

in which f;‘(j = 1,m) are given numbers. Here A,, B,, C}, A., B, and C, are number matrices.
The pair (A4,, Bp) is assumed to be controllable and the pair (A,,C),), observable.

Forced oscillations at the outputs of the system and controller as t — oo are

o0
2(t) = Y Filwl)sin [wt + oi(])], i=Tr,
k=1
[e.e]
u;(t) = Zﬂj(w}:)sin {w}:t + goy(wf)} . j=1,m.

The matrices A,, B,, and C), of system (1) are such that there exist matrices A., B, and C.
of controller (2) for which the amplitudes of forced oscillations of the outputs of the system and
controller satisfy the conditions

o0 o0
ZE;(w,{) <z i=T,r and Zﬂf(w,{) < _3*2, ji=1,m, (5)
k=1 k=1

where z;" and u; (i=1,7, j = 1,m) are given numbers.
Let the matrices Ay, By, and Cp, be not known. To design controller (2), let us apply an adaptive
control described by equations with piecewise-constant coefficients

)‘(((f) — Agﬂ)xt(:fi) + Bén)y + LV('{), u= Cén)xgn)’ tho1 <t<t,, r=1,N. (6)

In these equations, k (k = 1, N) is the number of the adaptation interval, ¢, is the instant of
completion of the xth interval. The instant ¢, like the number N and matrices Agﬂ), Béﬁ), and

Cc('i), are determined during adaptation, L is a given matrix, and v(®)(t) € R™ is a vector of test
actions, whose components are defined below.

Upon completion of adaptation, the controller at instant ¢y is described by Egs. (2), in which
A= AN B.=B™ and €. = ™).

Problem 1. Find an adaptation algorithm for the coefficients of controller (6) such that sys-
tem (1), (2) satisfies conditions (5) for the steady-state amplitudes of forced oscillations.

3. CONTROL FOR A KNOWN SYSTEM

If the matrices Ay, Bp, and C), of system (1) are known, then the matrices of controller (2)
guaranteeing conditions (5) are defined by expressions [23]

Ae=Ap = By(R™' =7 7%Q1)B, P — K;C,, B.= Ky,

7
Cc.=-R'BJP, K;=(E,—y*YP)'YC), ™

in which the n x n nonnegative matrices P and Y are the solutions of the Riccati equations

AYP + PA, — PB,(R™' —472Q)BI P = —CrQC,, (8)
AY + YAl —YCI(E, —472Q)C,Y = —B,QiBY, (9)
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A FREQUENCY ADAPTIVE CONTROL 1111
with number ~ satisfying the condition
Amax(PY) < ~2, (10)
where Apax(M) is the largest eigenvalue of the nonnegative matrix M.

Remark 1. For Q = E, and R = Q1 = E,, (E, is an n X n unit matrix), Egs. (8) and (9) coincide
with the equations of the H.,-suboptimal control [24] (for By = By = B), and C; = Cy = C),).

Let Q = diag (q1, q2, .., ¢ ), R=diag(r1, ro, ..., T ), and Q1 = E
Assertion 1. If the elements of the matrices QQ and R satisfy the inequalities

1 < .., ) B .
quﬁZan i=1,r and r;> *22f2, ji=1m (11)
v k=1

i k=1
then the steady-state amplitudes of forced oscillations of system (1), (2) with matrices (7)—(9) satisfy
the inequality

r

Z

= 1

o0 m o
P Z 2 2.1 ’ (12)
in which ~v* is the least v for which P and Y are nonnegative matrices and condition (10) is satisfied.

The proof Assertion 1 is given in the Appendix.

Inequality (12), in turn, implies that controller (2) with coefficients (7) guarantees conditions (5)
imposed on the amplitudes of oscillations if v* < 1.

4. THE FIRST ADAPTATION INTERVAL

4.1. Frequency Parameters of a System

For the sake of simplicity of presentation, we assume that system (1) is asymptotically stable.
To estimate its description matrices, let us apply at the last matrix input m test vectors

n
u;(t) = e Zpﬁ sinwg(t —tg), to+(j— 1)V <t <to+jrV, j=T,m, (13)
k=1

where p7) is the amplitude of the kth harmonic of the test action of the jth experiment and wy is
the frequency of the kth harmonic (for which p > 0, wx # 0 (j = Im, k=1,n) and |w;| # |wj|
(i # j)), € = col;E,, is the jth column of the matrix F,,, and 7(!) is the duration of the jth
experiment, i.e., a given number for which to +mr( = t; (it can be found experimentally from
the necessary conditions [21] for the identification process to converge).

Let us apply the outputs y;(t) (j = 1,m) of the system to the inputs of a Fourier filter, whose
outputs are the estimates

to4jr™D)
2 .
¢z]k = ¢z]k ( ) P PR / yij(t) sinwy (t — o) dt,
to+(—1)rD)
5 to+jr(™ (14)

?Zz‘jk: = Yijk (7-(1)) — o) / Yij(t) coswy(t — to) dt,
to+(j—1)7(V)

1=1,r, j=1,m, k=1n,

of the elements ¢;;; and v, of the matrices &, = Re W (jwy) and ¥, = Im W (jwy,) (k = 1,n) of
frequency parameters [25] of system (1), where W (s) = Cp(E,s — Ap) 1B, is its transfer matrix
and y;;(t) is the ith component of the vector y;(t) found in the jth experiment.
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1112 ALEKSANDROV, ORLOV
4.2. Identification of a System

System (1) is identified as a canonical Luenberger form [22]

x=Ax+B(u+f), y=z=Cx, t>1. (15)

The blocks A;; and c¢;; (i = 1,r, j =1,r) of its matrices A and C are of special structure

00 - 0 —a 00 - 0 —a
10 -0 —a 00 -0 —all
Ay = 01 0 —CLZ[-?] ) AZ#] = . .o . ) (16)
S 00 - 0 —a "
00 --- 1 _az[.’i’i_” 00 ---0 0
Cii:(o“‘ 01)’ ci>j:(0“‘ O_Cij)a Ci<j:(0"' 0)’
where v;; = min (v, v;) and v; (i = 1,7) are the observability indexes [22] of the system, which are
taken to be known for simplicity. The matrix B consists of blocks b;; = col (bgg)], bg}, e bgl 1 )

(i=1,r, j=1,m).
The coefficients of the matrices A = A and C(V) = € are found from the equalities [26]
i—1

. S -1 . i—1 R )
Cij — Z Cik(Unj — ykj)gk[?k” ] + (745 — Z/Zj)gz[]'” I _ 0, i=75+1,r, j=1,r—-2,
k=j+1

~[K] e E— . .
_gzj Z gz[l Clj7 kZO?”’i]’_]—a 2217T7 j:17ru
l=j+1

in which g, = v and 7, = min(vg,v;) for k < 4, and g; = min(yg + 1 VZ) for £ > i, and g[ ]

(k =0,v;5 — 1, i = 1,7, j = 1,r). The coefficients of the matrix BW = B are determined from
the system of frequency identification equations [26]

m . I)k. .o~ o~
Z i, b}EJi] +Z Z Vh; gk[J] —O"hy, k=T1,r, (18)
in which

2 = diag (w1, wo, ..., wp )@ J R Ep, J= <0 _1>,

i; =col; I (i =1,m), }Alz‘:COhE(i:l’T)’
T

A= (-8 ~0 & ~y ... ~b, 0, ) .

and 0,, is an m x m zero block.

Remark 2. The solution of system (18) gives the coefficients of an equivalent system of (1) in
“input-output” form

G(s)y = B(s)(u+f), t>t,
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and polynomials of its matrices have a special structure [29]

1113

k43

Gi(s) = G+ Gus o+ g T s, =Ty
(s

) — [ } gzg}s + /\ZBVU ﬂsﬁij_l’ i = ].,7"7

EZ]( ) 3[0]+b[118+ —|—b£;1]5m’ 1=1

7T7 ]:1

3

Using transformations (17), we can estimate the coefficients of matrices (16) from the coefficients

of the special polynomial matrix (A}(s) For 11 < vy < ... < v, the coefficients are a[k] gl[]k]
(k= 0,vij —

1,4 =1,r, j = 1,7) of matrices (16) and the estimates for the coefficients of matri-
ces (16) of the Luenberger canonical form are obviously determined directly from the solution of
system (18) of frequency identification equations.

Assertion 2 ([27]). The solution of the limit system (18) as (1! — c0) exists and is unique.

Corollary 1. By the properties [28] of continuous dependence of the solution on the matrices of
system (18) and its vectors of free coefficients, the following limiting equalities hold:

[}]im ay;](Tm): y;], k=0,v—1, i=1,r, j=1,r,
T — 00

Jim by =p k=001, i=Tr, j=Tm,
T =00

[}]Hn cij (Tl = ¢4, i=1,r, j=1,r.
T =00

4.3. Controller Design

Using identification results, let us derive the Riccati equations (8) and (9), determine the ele-
ments of the matrices @ and R from inequalities (11), Q1 =

= E,,, and replace the matrices A, By,
and C), by their estimates AD | BMW and €M, Solving these equations for different ~, we find the

number v* and compute using expressions (7), the matrices Ag), B.@, and C£2) of controller (6)
for the second interval

%2 = AL 4 By 4 Iv®, u= X, (19)

It is easy to show that the matrices Ag), B£2), and C£2) of this controller are determined from
the matrices A, B and C(M by relations (7) within to a similarity transformation.

5. THE SECOND ADAPTATION INTERVAL

5.1. Frequency Parameters of a Closed-Loop System
Let us excite system (1), (19) with m test vectors
2

v, (t) = e Z P sinwg(t —t1), t1+(J — D@ <t<t;1+jm?®, j=T,m
k=1

9

where Pjk >0 (j = 1,m) are the amplitudes of test signals of the closed-loop system.
The duration of every experiment is

7—(2) — 7—(1) + K’
where K is a given positive number and to = t; + mr?.
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1114 ALEKSANDROV, ORLOV

Applying the outputs y;(t) (j = 1,m) of the closed-loop system (1) with controller (19) to the
inputs of a Fourier filter, we obtain the estimates

5 t1+573
e —T7, j=T,m, k=1 21
t1+]T(2) /L_ 7"”7 ] - 7m7 - 7n7 ( )

~ 2
&ijk = @ / Yi;(t) cos wy(t — t1) dt,

t1+(j—1)7

for the elements 6;;, and &;;;, of the matrices O = Re W (jwy) and =) = Im Wy (jwy) (K = 1,n) of

frequency parameters of the closed-loop system
x . A BCC(Q) X On,m (2) B £
x| T\ BPc  a® SN I R A (YN b
(22)

y:(C 0T,n)[§(2)]7

C

whose transfer matrix is

W(s) = [E, — W(s)Wc(s)]_IW(s)Wv(s), (23)
where W,(s) = CC(Q) (Ens — Ag))il BEQ) and W, (s) = C£2) (Ens — Ag))il L.

Remark 3. If the closed-loop system (22) becomes unstable, controller (19) must be disconnected
and the input of system (13) must be formed in the third adaptation interval, increasing the
filtration time

=@ 1 K (24)

compared to that of the first interval. Then, solving the system of frequency identification Egs. (18),
we can find the matrices A®), B®) and €, and then solving the Riccati equations we can find
the matrices A£4), B£4), and Cc(4) of the new controller. Filtration time must be increased until the
closed-loop system becomes asymptotically stable.

5.2. Identification of a System

Using the matrices ék and fk of estimates of frequency parameters of the closed-loop sys-
tem (22), let us find new values for the matrices @, = @p(7?) and ¥, = ¥ (r?) (k = T,n) of
estimates of frequency parameters of the system. For this purpose, we use the relation

Py + 0y, = [0 + jER] AWe(wr) Ok + 1 5k] + Wo(jwr)} ", k=T,n, (25)

which obviously follows from (23).

In (25), replacing the matrices @) and =} by their estimates, we obtain new matrices ng and
@k (k = 1,n) of estimates of frequency parameters of the system. Using these new matrices,
we form a new system of frequency identification Egs. (18). Solving this system, after simple
transformations (17) we obtain the matrices A?), B?) and C'®) for the identified model (in canonical
form (15)) of system (1).
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A FREQUENCY ADAPTIVE CONTROL 1115

Let us verify whether the conditions

K LK)

a;; S < €a, k=0, —1, i=1r, j=1,r,
bz[l;](l) - bl[l;]m) < &y, k= W? 1= 17T7 J = 17m7 (26)
cgjl-) - Cz(?) < e, i1=1,r, 7=1r,

hold or not (closeness of coefficients of the systems identified in the first and second adaptation
intervals), where =+ denotes the ratio a + b = |a — b|/|b| for b # 0, or a + b = |a| for b = 0, and &,
€p, and g, are given numbers.

If these conditions are satisfied, then the adaptation process terminates at N = 2, and unknown
matrices of controller (2) take the form A. = A((;Q), B, = BéQ), and C, = CC(Q), respectively.
Otherwise (if the system identified on the first adaptation interval is not accurate), we must design
a new controller (for the third adaptation interval), etc.

6. CONVERGENCE OF THE ADAPTION PROCESS

Let us introduce experimental filterability functions [30]

2 T
Ce(T0,7) = - /@i(t) sinwy(t — 7o) dt,
70

- i=1,r, j=1,m, k=1,n, (27)
2
£5m0,7) = = [ Gult) cosen(t — m)

70

which are the outputs of a Fourier filter, whose inputs are fed with the “natural” output y(t) =

col(7;(t),ys(t), ...,7,(t)) (for u(t) = 0) of system (1). The parameter 7y defines the start of the
experiment (verification of disturbances for fi-filterability).

A disturbance f(¢) is said to be strictly fi-filterable [30] if

TlLrgoﬁfk(To,T) = Tllrgoffk(To,T) =0, i=1r, k=1n. (28)

Remark 4. Condition (28) holds if the test frequencies do not coincide with the frequencies of

external disturbances (|wg| # \wjf\ (k = 1,n, j = 0,00)). If it does not hold, then other test
frequencies must be chosen until the condition (28) is satisfied with sufficient accuracy.

Assertion 3. If a disturbance f(t) is strictly ff-filterable, then estimates (14) as T — oo converge
to the frequency parameters of system (1):

lim ¢ij(T) = dijr and lim Pip(T) = Pijr, i

Il
—
\'ﬁ
<

Il
—
o

Il
—
3

(29)

The proof of Assertion 3 is given in [31] for a SISO system and extended to multidimensional
systems in [32], where the convergence rates (29) are estimated.

Assertion 4. If a disturbance f(t) is strictly ff-filterable, then the adaptation process converges
and guarantees conditions (5).

Proof. The adaptation process converges (by Assertion 3 and 2 and Corollary 1) if the filtration
time T takes a large value on some interval of adaptation. That a large 7 can be attained is implied
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1116 ALEKSANDROV, ORLOV

by conditions (20) and (24), which show that the length of every succeeding interval is greater than
the length of the preceding interval by a given magnitude K:

) = D) LK e =T,

The “natural” outputs 7,;(t) (i = 1,7, j = 1,m) of system (1) and of system (1), (6) are also
used in choosing amplitudes for test signals from the “small excitation” condition

where € is a given number defining the admissible deviation of “natural” outputs of a system and

a closed-loop system from their outputs under test signals.

7. AN EXAMPLE
7.1. Model of a System
Let us consider the gyroplatform [33] described by the equations
PR+ PSw + HCw + NGB =0,
. 30
Jw —C"HSw — (CTH + STN) B=Qu+f), (30)

where 31 and (33 are precession angles (measured rotation angles) of gyroscopes, w; and w9 are the
projections of absolute angular velocities of the platform on its axes, i.e., the variables

dl = w1 and dg = w9, (31)

in which a; and g are stabilization angles (adjusted variables), u; and ug are torques of stabiliza-
tion (control) motors, f; and fy are external disturbances, and

(P O (@ O ) (R O
[ Jz O [ —sind; cosdy [ —cosd; —sindy
‘7_< 0 jy>’ 8_< cos 0y sin52>’ C_<—sin52 cosdy |’

o=la] =[] w=[u) =[2)

The parameters of the gyroplatform are
pr=po=10"° kg x m?, g =q¢=10"" n;=ny=4x10"°Nms,
hi =hy =102 Nms, j, = 10 kg x and/s?, j, =2 x 10> kg x m/s?, (32)
01 = —20° &9 = 30°.

Typical external disturbances acting on the gyroplatform are step or harmonic disturbances.
Eight of the latter [23] are

f1(t) = pl sinwlt + pl coswit,  fa(t) = pd sinwlt + p!f coswit, (33)

where p{ =410 and pg = 565 are amplitudes and w{ =5 and wg = 7 are rolling frequencies of the
gyroplatform base.

AUTOMATION AND REMOTE CONTROL Vol. 67 No. 7 2006



A FREQUENCY ADAPTIVE CONTROL 1117

The gyroplatform controller is
%. = AVx, +BYE, u=cCcWVx,. (34)

Its coefficients are determined in [23] from the values of parameters (32), v = oo, matrices @ =

8 x 102 Ey and Q1 = 10?°Fy, and R = E» of weight coefficients of Eqs (8) and (9). For the sake of
(1)

brevity, here we omit the values of the coefficients of the matrices A7, Bcl) and Cp M,

This controller in steady-state guarantees an adjustment accuracy of

larse] <3 %1074, Jage| <3x 1074 (35)

7.2. Formulation of the Problem

Let the kinetic moment h; at some (unknown) instant ¢; take the value h(12) < h(ll) due to

the failure of one of the gyromotors. This situation is called the second mode of operation of the
gyroplatform (unlike in the first mode, in which kinetic moments are equal hgl) = hg).

Problem 2. Find the instant t1, identify the system (second operation mode), and find new
controller coefficients (adjust the controller to the new wvalue of hgz)
under which the accuracy condition (35) is satisfied.

of the kinetic moment hy)

7.8. A Solution Method

For a gyroplatform, the adjusted variables a1 and as are not controllable. Hence system (30) is
completely controllable, but “system” (30), (31) is not controllable completely. On the other hand,
using the first subsystem of Eqgs. (30) we find a relation for the steady-state values of ay and as
with (1 and (2. In particular, for step disturbances (w3 = we = 0 in (33)) this relation is [33]

b b b b
a1 st = 1 ﬁl st + = 52 sts Q2 st = hillﬁl,st + %52,5& (36)

where “st” denotes the steady—state values of variables and b;; (i,j = 1,2) are numbers defined
by parameters (32) of the gyroplatform. Using a similar relation for the general case, we can
reformulate problem 2, replacing condition (35) by conditions for the variables 5, and [,

|Bl,st| S ﬁist? |52,st| S B;,stv (37)

where f7 i and 33 o are numbers defined by relations (36) and similar relations and bounds for the
steady-state error in inequalities (35). Replacing the aim condition (35) by condition (37), we can
design a controller using only (30).

Note that changes in the kinetic moment hy have virtually no influence on the steady-state error
due to the variables 8; and (2 since the gyroplatform controller has a sufficiently large gain. On
the other hand, by expression (36), the adjusted variables a; and «s largely depend on the values
of kinetic moments.

To illustrate our approach to solve problem 2, let us consider the first relation in (36), assuming
for the sake of simplicity that b1o = 0 (i.e., gyroplatform parameter is §; = 0). Then by the equality
atgt = (b11/h1)B1st, the error (1 ¢ must be halved if the kinetic moment h; is halved. To attain
this result, controller gains must be increased, i.e., we need a new controller, which is synthesized

(2)

after the instant ¢; (when the new kinetic moment h; = hy”’ is known).

Furthermore, the gyroplatform is not asymptotically stable (its characteristic polynomial has
two zero roots). Therefore, an open-loop system (30) without a controller cannot be identified
using a test signal (13). Hence we shall estimate its parameters, using the results of identification
of a closed-loop system.
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1118 ALEKSANDROV, ORLOV

7.4. Solution of the Problem

We solve the problem with MATLAB, using its extension ADAPLAB-M [20] for finite-frequency
identification and frequency adaptive control.

The problem is solved in steps:

(1) Filtering (21) the closed-loop system (30), (32), (34), we obtain the matrices @) and =, of
estimates of frequency parameters.

(2) Using formulas (25) (in which Wo( Jjwi) and W, (jwi) are computed from the coefficients of
the matrices Agl), Bél), and Cc(l) of controller (34)), we find the values of the matrices @), and @k:
(k =1,n) of estimates of frequency parameters of the system.

(3) Solving the system of frequency identification Eqgs. (18), we find estimates for the coefficients
of the gyroplatform model

x=AWx+BWu+f), g=CWVx, t>t,

in the first mode (with hgl) = 1072Nms).

(4) Changing the kinetic moment hy := h(12) = 5 x 1073 Nms, we find (from the solution of
system (18) of frequency identification equations and equalities (17)) the matrices A®), B® and
C®@ of the gyroplatform model in the second mode.

(5) Comparing the matrices of first- and second-mode models, we find a change in the kinetic
moment weakly changes matrix coefficients (controller gains exceed the coefficients of the gyro-
platform model to such an extend that “power failure” can be hardly be detected). Moreover,
numerical experiments show a change in the kinetic moment h; (on the interval [0.001,0.01]) exerts
considerable influence on two nonzero minimal (in modulus) roots (s3 and s4) of the characteristic
polynomial of the system (forming a complex-conjugate pair from identification results). Therefore,
the instant ¢ is determined from the product §354 of roots of the identified system (its large change
shows the commencement of the second mode). In the figure below, the product ss(hyi)ss(hy) is
shown as a function of h; in the range [0.001,0.01].

Remark 5. For comparison, let us state the values of roots of the matrix A®) constructed
from parameters (32): sgl) = —12.41 and 8511) = —29.08, and their product sgl)sil) = 361. In
the second mode (with hy = hgz))’ the roots of the matrix A®) are s:(f) = —10.95 + j5.56 and
s = ~10.95 — j5.56 and their product is s{”s = 150.8.

s3(h1)s4(hy)
400

350
300
250
200
150
100

50

Il
0  0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

hy

Figure.
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Estimates for the roots of the matrix A1) are

s = —1248 and 8" = —31.74, and their product is 3{"5{" = 396. (38)

In the second mode (with hgz) =5 x 1073Nms), estimates for these roots are
3% = —11.96 + j5.51 and 3¥) = —11.96 — j5.51, and their product is 5.5, = 173.3.  (39)

Hence a new controller must be designed.
(6) Controller

x.=APx.+ B3, u=0P%x, (40)

[

is designed by the LQ-procedure, which is the same as the Ho,-suboptimal control procedure [23]
if v — oo. The coefficients of the matrix ()2 were increased by

~ 2
MU\ (Losx 102\t
R2) BTl x107% ) T

where B(ll) for (38) and ?L%Q) for (39) were determined from the curve shown in the figure.

The matrices of controller (40) take the values

—430.17 —47575 —4.1849 x 1010 —0.74481 —20417  2.1756 x 100

1.5563  57.352 —5.6250 x 107 —0.39838 —46.155 —2.9828 x 107

4@ 0 1 —1.0197 x 10* 0 0 —2.9460 x 10°
¢ | —311.89 —37170 —6.5962 x 100 —256.45 —61301 —3.1553 x 10 |’

0.98091 105.28 —3.7611 x 10"  0.69522 —9.1289 —8.4052 x 107

0 0 —2.9646 x 103 0 1 —1.2628 x 10*

4.1849 x 1010 —2.1757 x 1010
5.6242 x 107 2.9827 x 107
9.7865 x 103 2.9452 x 103
¢ 6.5963 x 1019 3.1527 x 10° |’
3.7596 x 107 8.4050 x 107
2.9452 x 103 1.2236 x 104

0@ _ —101.75 —11095 43933 14.942 —2082.6 —49042
© —43.670 —4039.7 —79937 75.451 11650 524800 |

(7) Modeling of the closed-loop system (30), (32), (40) shows that the new controller satisfies
the accuracy conditions (35).

8. CONCLUSIONS

A new adaptive control for a multidimensional system under bounded polyharmonic distur-
bances (3) for guaranteeing adjustment accuracy conditions (5) is designed from experimentally
determined frequency parameters of a system and a closed-loop system excited by a “sufficiently
low” test signal.
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APPENDIX

Proof of Assertion 1. The following theorem [23] holds for the properties of transfer matrices
W.¢(s) and Wy f(s) interconnecting the vectors of outputs z of a system and u of its controller with
disturbance f.

Theorem 1. For the frequency matric inequality®
W (—jwh) QW (jw!) + Wi (—jw! ) RW,s (jw!) < ¥*Ep,  w! €0,00), (A.1)

to hold, it is necessary and sufficient that the matrices of controller (2) be formed from rela-

tions (7)—(9), and condition (10) hold.

Taking w = w}: in (A.1) and multiplying it on the left by A —— (fire 191k, fore P2k,
.., fmre7%mk ) and on the right by f_[f} = col( fre€/ Pk, forel®2e ... fopel?mk ) we obtain

KT

ETWE (i)W Gl B + €T WL (= jel ) RW g (o < 42Tl (A.2)

It is easy to verify [23] that the amplitudes Ei(w}: ) and T, (w}: ) of steady-state forced oscillations
in each of coordinates of the vectors z and u are moduli of the elements of the complex-conjugate
vectors

W. Gl and W, p(—jwl )™, and Wi Gw)E¥ and W, (—jw)e,

which when replaced reduces (A.2) to the form
STzl + S ratwl) <2 fA (A.3)
i=1 j=1 j=1

Adding inequalities (A.3) for all frequencies, by virtue of (4), we obtain

),
Z%ZZ (@) E_: z_: )S’Y2z_:z_: ik < Zf*2

=1 k=1

This expression implies inequality (12) if the coefficients of the diagonal matrices @ and R satisfy
conditions (11).
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