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Abstract—A method of constructing an adaptive control for reference-model systems under
an unknown bounded external perturbation in the form of sum of an unbounded number of
harmonics is designed. This adaptive control ensures that the output of the object tracks the
output of the reference model with a given accuracy.

1. INTRODUCTION

The theory of reference-model adaptive control has been developing for the last few decades
since the publication of [1, 2] describing the design of an adaptive control algorithm based on the
use of a measurable variable and its derivatives. Refinement of this algorithm (for example, in [3])
led to the design of controls without these derivatives. Subsequent works were concerned with
the robustness of adaptive control to external disturbance [4], unstructured uncertainty [5], and
development of an algorithm for multidimensional systems [6].
Nonmeasurable external disturbance acting on the controlled object may induce large errors

in tracking of the output of the reference model by the output of the system. In these papers,
control algorithm is designed by the method of Lyapunov functions and does not easily yield to
modification so that the tracking error is not greater than a given value.
The method of recurrent objective inequalities [7] is effective in designing adaptive control al-

gorithms for bounded external disturbances. Such an algorithm [8] for reference-model systems
ensures a tracking accuracy not greater than a given value dependent on the disturbance bounds.
Using identification of an object and a closed-loop system by the finite-frequency method [9]

and synthesis of regulators under external disturbances (sum of an infinite number of harmonics),
we design an adaptive control under which tracking error is not greater than a given value.

2. FORMULATION OF THE PROBLEM

Let us consider a minimal-phase system described by the differential equation

y(n) + dn−1y
(n−1) + . . .+ d0y = kpu

(p) + . . . + k0u+ f, p < n, t ≥ t0, (1)

where y(t), u(t), and f(t) are the measurable output of the system, control, and external distur-
bance, y(i) and u(j) (i = 1, n, j = 1, p) are the derivatives of the output and control, di and kj

(i = 0, n − 1, j = 0, p) are unknown numbers, and n and p are known. For simplicity, we assume
that p = (n − 1) and the disturbance f(t) is a bounded nonmeasurable paraharmonic function

f(t) =
∞∑
i=1

fi sin
(
ωf

i t+ φf
i

)
, (2)
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in which ωf
i and φ

f
i (i = 1,∞) are the unknown frequency and phase, respectively, and the ampli-

tude fi (i = 1,∞) is unknown and satisfies the inequality
∞∑
i=1

|fi| ≤ f∗, (3)

where f∗ is a known number.
The desired output of the system is a measurable output ym(t) of the reference model described

by the differential equation

y(nm)
m + dm,(nm−1)y

(nm−1)
m + . . .+ dm,0ym = km,pmr

(pm) + . . .+ km,0r, nm < pm, (4)

where dm,i and km,j (i = 0, nm − 1, j = 0, pm) are known numbers and r(t) is a measurable action,
which is also a bounded polyharmonic function

r(t) =
∞∑
i=1

ri sin (ωr
i t+ φr

i ) , (5)

in which the frequency ωr
i and phase φ

r
i (i = 1,∞) are unknown, whereas the amplitude ri (i = 1,∞)

is known and satisfies the inequality

∞∑
i=1

|ri| ≤ r∗, (6)

where r∗ is a known number.
The aim of control u(t) is to force the difference e(t) = y(t) − ym(t) between the output of

system (1) and reference model (4) to satisfy, beginning from a certain instant tN > t0, the
condition

|e(t)| ≤ e∗ + ε(tN ), t ≥ tN , (7)

where e∗ is a given number and ε(tN ) is a tN -dependent number, whose modulus is less than e∗.
Control u(t) is generated by a controller described by the differential equation

dc,ncu
(nc) + dc,nc−1u

(nc−1) + . . . + dc,0u = kc,pce
(pc) + . . .+ kc,0e, pc ≤ nc, t ≥ tN . (8)

Up to instant tN , control is formed by an adaptive controller described by a differential equation
with piecewise constant coefficients

d[i]
c,nc

u(nc) + d
[i]
c,(nc−1)u

(nc−1) + . . . + d
[i]
c,0u = k[i]

c,pc
e(pc) + . . .+ k

[i]
c,0e+ v[i],

pc ≤ nc, ti−1 ≤ t ≤ ti, i = 1, N.
(9)

In this equation, i (i = 1, N ) is the number of the adaptation interval, ti is the endpoint of
the ith interval, the numbers ti and N are determined in the course of adaptation, and v[i](t) is a
known test signal.
The coefficients of controller (8) upon completion of adaptation at the instant tN take the values

dc,i = d
[N ]
c,i and kc,j = k

[N ]
c,j (i = 0, nc j = 0, pc).

Our problem now is to design an adaptation algorithm for the coefficients of controller (9) such
that, beginning from a certain instant tN , the difference between the outputs e(t) of the system
and reference model satisfies the tracking accuracy condition (7).
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3. CONTROLLER FOR A KNOWN SYSTEM

Assuming that the coefficients of Eq. (1) are known, let us design a controller (8) such that the
tracking accuracy condition (7) is satisfied.
Applying the Laplace transformation under zero initial conditions, we find Eqs. (1), (4), and (8)

take the form

d(s)y = k(s)u+ f, dm(s)ym = km(s)r, (10)
dc(s)u = kc(s)e, (11)

where

d(s) = sn +
n−1∑
i=0

dis
i, k(s) =

p∑
i=0

kis
i, dm(s) = snm +

nm−1∑
i=0

dm,is
i,

km(s) =
pm∑
i=0

km,is
i, dc(s) =

nc∑
i=0

dc,is
i, kc(s) =

pc∑
i=0

kc,is
i.

Multiplying the first equation in (10) by dm(s) and the second equation by d(s), and then
subtracting them, we obtain the equation for the extended system. It describes the difference
between the motions of system (1) and reference model (4):

d̃(s)e = k̃(s)u+ h(s)r + dm(s)f, (12)

where

d̃(s) = d(s)dm(s), k̃(s) = k(s)dm(s), h(s) = −d(s)km(s).

Eliminating the variable u(t) from the controller Eq. (11), we obtain the equation of the closed-
loop system

dz(s)e = hz(s)r +mz(s)f, (13)

where

dz(s) = d̃(s)dc(s)− k̃(s)kc(s), hz(s) = dc(s)h(s), mz(s) = dc(s)dm(s). (14)

Let us rewrite Eq. (13) as

e = Ter(s)r + Tef (s)f, (15)

where the transfer functions interconnecting tracking error with defining and perturbing actions
are of the form

Ter(s) =
hz(s)
dz(s)

=
dc(s)km(s)d(s)

dm(s)[d(s)dc(s)− k(s)kc(s)]
, (16)

Tef (s) =
mz(s)
dz(s)

=
dc(s)dm(s)

dm(s)[d(s)dc(s)− k(s)kc(s)]
. (17)

The ratio of numerators of these transfer functions satisfies the inequality

|km(jω)d(jω)|
|dm(jω)|

≥ f∗

r∗
, 0 ≤ ω <∞, (18)
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or the inequality

max
0≤ω<∞

|km(jω)d(jω)|
|dm(jω)|

≤ f∗

r∗
. (19)

Let the system and reference model be such that inequality (18) holds. Consider controller (11)
with the polynomials

dc(s) = k(s)dm(s), kc(s) = d(s)dm(s)− δ1(s), (20)

where δ1(s) is the Hurwitz polynomial defined by the identity

δ1(−s)δ1(s) = d(−s)d(s)[dm(−s)dm(s) + q11km(−s)km(s)], (21)

in which q11 is a positive number.

Assertion 3.1. If system (1) and reference model (4) have property (18) and the coefficient q11
in identity (21) satisfies the condition

q11 ≥ 4r∗2

e∗2
, (22)

then the difference between the outputs of the system (closed by controller (11), (20)) and reference
model satisfies the tracking accuracy condition (7).

The proof of this assertion is given in the Appendix.
Assuming that inequality (19) holds, let us consider controller (11) with polynomials

dc(s) = k(s), kc(s) = d(s)− δ2(s), (23)

where δ2(s) is the Hurwitz polynomial defined by the identity

δ2(−s)δ2(s) = d(−s)d(s) + q22, (24)

in which q22 is a positive number.

Assertion 3.2. If a system and its reference model have property (19) and the coefficient q22 in
identity (24) satisfies the condition

q22 ≥ 4f∗2

e∗2
, (25)

then the difference between the outputs of the system (closed by controller (11), (23)) and its refer-
ence model satisfies the tracking accuracy condition (7).

The proof of the assertion is given in the Appendix.
In the sequel, we refer to δ1(s) and δ2(s) as factorized polynomials.
Note that for polynomials (20) and (23) of the controller and the polynomials of the equation

of the closed-loop system (13) are of the structure

dz(s) = k(s)dm(s)δ1(s), hz = k(s)dm(s)km(s)d(s), (26)

or

dz(s) = k(s)dm(s)δ2(s), hz = k(s)km(s)d(s). (27)
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4. THE FIRST ADAPTATION INTERVAL (IDENTIFICATION OF SYSTEM)

A Solution Approach

Assertions 3.1 and 3.2 are helpful in designing a controller that solves our problem if the coeffi-
cients of system (1) are known. If unknown, they must be identified and polynomials (20) or (23)
of the controller must be found using the estimates of these coefficients. Since the output of the
system is not compared with the output of the reference model in identification, identification time
must be minimal. For this purpose, in the first adaptation interval, we must find rough estimates
for the coefficients of the system that are adequate for designing a stabilizing controller (controller
ensuring the asymptotic stability of the system). In the second and subsequent adaptation inter-
vals, identification of the system is continued, but with the difference between the outputs of the
reference model and system closed by a controller constructed at the previous adaptation interval.

Fourier Filter and Frequency Identification Equations

Adaptation algorithms based on finite-frequency identification are described in [9, 10], in which
adaptation aim is to design a model control. The aim, expressed by inequality (7), leads to certain
properties of the algorithm, though the algorithm, its parameters, and convergence conditions are
preserved. Therefore, below we briefly describe the adaptation algorithm, mentioning its specific
properties induced by aim (7).
Let us describe the Fourier filter and frequency identification equations underlying the design

of the algorithm. Let us consider a generalized system described by the differential equation

η(γ) + θ1η
(γ−1) + . . .+ θγη = θγ+1u

(ν) + . . . + θγ+ν+1u+ f, (28)

where θ = [θ1, . . . , θγ+ν+1] is a vector of unknown coefficients and η(t) is the measurable output.
These equations are the same as Eq. (1) if γ = n, ν = p, η = y, θi = dn−i (i = 1, γ, γ = n), and
θγ+i+1 = kν−i (i = 0, ν, ν = p).
The Fourier filter is of the form

αη
k(τ) =

2
ρkτ

tF +τ∫
tF

eλ(t−t0)η(t) sinωk(t− t0)dt, (29)

αη
γ+k(τ) =

2
ρkτ

tF +τ∫
tF

eλ(t−t0)η(t) cos ωk(t− t0)dt (k = 1, γ),

where ρk, ωk (k = 1, γ), and λ are given positive numbers (amplitude, frequency, and exponent of
the test signal), which can be found experimentally [11]; τ and tF are numbers that take the values

τ = qTb, tF = q̃Tb, Tb =
2 ∗ π
ωb

, ωb = min(ω1, . . . , ωγ); q = 1, 2, . . . , q̃ is a given number, and τ and

tF are called the filtering time and filtering start instant, respectively. In the sequel, we use the
vector αη(τ) = [αη

1(τ), . . . , α
η
2γ(τ)].

Frequency identification equations are of the form

−[αη
k(τ) + jαη

γ+k(τ)]
γ∑

i=1

sγ−i
k θi(τ) +

ν∑
i=0

sν−i
k θγ+i+1(τ) = [α

η
k(τ) + jαη

γ+k(τ)]s
γ
k,

s = λ+ jωk, k = 1, γ,

(30)

where θi(τ), i = 1, γ + ν + 1, are the estimates of the coefficients of system (28).
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Identification process terminates at the instant t = qTb when the necessary conditions for its
convergence

|θi(qTb)− θi[(q − 1)Tb]|
|θi[(q − 1)Tb]|

≤ εθi , θi[(q − 1)Tb]| �= 0 (i = 1, γ + ν + 1), (31)

are satisfied, where εθi (i = 1, γ + ν + 1) are sufficiently small numbers.
The exponent λ ≥ 0 must satisfy the condition

λ ≥ max(Res1, . . . , Resγ), (32)

where si, i ⊂ 1, γ, are the roots of the polynomial θ(s) = s(γ)+
γ−1∑
i=1

θis
i with positive real part. The

number λ can be experimentally determined. If system (28) is asymptotically stable, then λ = 0.
Identification of a system. The aim in the first interval is to identify system (1) with some

accuracy that aids in finding the stabilizing controller (9) for the second adaptation interval.
This aim is achieved by Procedure 4.1 consisting of the following operations:
(a) System (1) is excited by a test signal

u(t) = expλ(t−t0)
n∑

k=1

ρk sinωk(t− t0) (33)

of given amplitude ρk, frequency ωk (k = 1, n), and exponent λ satisfying condition (32).
(b) The output of system (1) is applied to the inputs of the Fourier filter (29), where γ = n.

The filter output is the vector αy(τ) of estimates of the frequency parameters of the system at the
instants τ = qTb, q = 1, 2, . . . .
(c) For every τ , the frequency Eqs. (30), where γ = n, ν = p, and αη(τ) = αy(τ), are solved

to find the vector θ[1](τ) = [d[1]
n−1(τ), . . . , d

[1]
0 (τ), k

[1]
p (τ), . . . , k

[1]
0 (τ)] of estimates of the coefficients

of system (1). These coefficients are used in verifying the necessary conditions (31). Let these
conditions hold at instant τ1 = q1Tb. Then the polynomials of the identified system are formed

d[1](s) = sn +
n−1∑
i=0

d
[1]
i (τ1)s

i, k[1](s) =
p∑

i=0

k
[1]
i (τ1)s

i. (34)

(d) Verification of conditions (18) and (19). Depending on which of them is satisfied, either
polynomials (20) or (23) for the controller are formed:

d[2]
c (s)u = k[2]

c (s)e+ v[2], t ≥ t1, t1 = t0 + τ1. (35)

In this equation,

d[2]
c (s) = k[1](s)dm(s), k[2]

c (s) = d[1](s)dm(s)− δ
[1]
1 (s), (36)

or

d[2]
c (s) = k[1](s), k[2]

c (s) = d[1](s)− δ
[1]
2 (s) (37)

and v[2](t) =
nz∑

k=1
ρ
[2]
k sinωk(t− t1), where ρ

[2]
k and ω[2]

k (k = 1, nz) are given numbers.

The polynomials δ[1]1 (s) and δ
[1]
2 (s) are determined from formulas (21) and (24) for d(s) = d[1](s)

and k(s) = k[1](s), respectively.

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 5 2004



REFERENCE-MODEL ADAPTIVE CONTROL 761

(e) The characteristic polynomial of the closed-loop system

ď [2]
z (s) = d[1](s)dm(s)d[2]

c (s)− k[1](s)dm(s)k[2]
c (s) (38)

is formed. It, like polynomials (26) and (27), has the structure ď [2]
z (s) = k[1](s)dm(s)δ

[1]
1 (s)

or ď [2]
z (s) = k[1](s)dm(s)δ

[1]
2 (s).

5. SECOND ADAPTATION INTERVAL

Identification of a Closed-Loop System and Adaptation Termination Conditions

The aim in the second adaptation interval is to identify system (1) exactly when it is closed
by the stabilizing controller (35). Then, the estimates thus obtained are used to design a new
controller that ensures the tracking accuracy condition (7) or a close condition.
In this interval, system (1) is closed by controller (35). System (1), (4), (35) is described, upon

elimination of the variable u(t), by an equation of the type (13)

d[2]
z (s)e = k(s)dm(s)v[2] + f̃ [2], t ≥ t1, (39)

where f̃ [2] = −d[2]
c (s)d(s)km(s)r + d

[2]
c (s)dm(s)f and

d[2]
z (s) = d(s)dm(s)d[2]

c (s)− k(s)dm(s)k[2]
c (s). (40)

Polynomial (40) contains the coefficients of system (1), whereas polynomial (38) contains the
estimates of these coefficients.
Since system (1), (4), (35) is assumed to be asymptotically stable (unstable case is described in

the next section), λ = 0 in the test signal v[2].
“System” (39) is identified with help of procedure 4.1.
Operation (b) of procedure produces the vector αe[2](τ), called the estimates for the frequency

parameters of the closed-loop system. Using these estimates, we can easily compute new vectors
αy[2](τ) of estimates for the frequency parameters of system (1) by the formulas of [10].
Operation (c) is implemented twice: first for the vectors αe[2](τ) and then for the vectors αy[2](τ).

Thus we obtain the vectors

θ[2](τ) =
[
d
[2]
n−1(τ), . . . , d

[2]
0 (τ), k

[2]
p (τ), . . . , k

[2]
0 (τ)

]
, (41)

θ[2]
z (τ) =

[
d[2]

z,nz
(τ), . . . , d[2]

z,0(τ)
]
. (42)

The second adaptation interval terminates at the instant t2 = t1 + τ2 when the following condi-
tions are satisfied:
(i) the necessary conditions (32) for vectors (41) and (42),
(ii) inequality

τ2 ≥ τ1 + τ∗, (43)

where τ∗ is a given number,
(iii) the condition

|ď [2]
z,i − d

[2]
z,i(τ2)|

|ď [2]
z,i |

≤ εz,i (i = 0, nz − 1), ď
[2]
z,i �= 0, (44)
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for the closeness of the coefficients of the expected and identified characteristic polynomials of the
system, where εz,i (i = 0, nz − 1) are sufficiently small given numbers, and
(iv) objective condition (7).
If inequalities (44) and (7) hold, then the adaptation process terminates: N = 2 and con-

troller (35) (for v[2](t) = 0, t ≥ t2) is the unknown controller (8).

Otherwise, operation (d), in which the vector θ[2](τ2) is used, gives controller polynomials d
[3]
c (s)

and k[3]
c (s) for the third adaptation interval, and operation (e) generates a new expected charac-

teristic polynomial, etc.
Note that aim (7) may not attained even in large adaptation intervals, because inequalities (31)

and (44) defining the duration of adaptation intervals contain the numbers εθi (i = 1, γ + ν + 1)
and εz,i (i = 0, nz − 1). Therefore, these numbers must be reduced if such a situation arises, and
reduction of numbers is repeated until the aim is attained.

Refinement of Conditions (44) for the Closeness of Polynomials of the System

There is an important fact in identification of “system” (39), viz., its transfer function inter-
connecting the tracking error with test signal contains reducible polynomials (though system (1)
does not contain such polynomials) and reducible polynomials cannot be identified since the finite-
frequency identification method is based on the values of this transfer function at test frequencies.
Let us consider two types of such polynomials.
First, the polynomial dm(s), according to (40), is contained in both parts of Eq. (39) of the sys-

tem. To avoid this known polynomial from identification, we must take ν = p and γ = (n+nm+p)
(for the controller with polynomial (36)) or γ = (n + p) (for the controller with polynomial (37))
in the frequency Eqs. (30).
Second, system (1) and the reference model (4) may be such that the polynomials k(s) and dm(s)

have a common unknown polynomial factor l(s) of unknown degree nl. According to (39) and (40),
this polynomial for the controller with polynomials (36) is reducible. In this case, the determinant
in frequency Eqs. (30) is zero. Reducing γ and ν in these equations by one and computing their
determinant (if it is nonzero), we obtain nl = 1. Otherwise, we once again reduce γ and ν by one
until we obtain γ and ν for which the determinant is nonzero. In real computations, condition
number of the matrix of frequency equations is used instead of this determinant.
Third, the identified and true polynomials k[1](s) and k(s) may have a common unknown poly-

nomial factor q(s). In this case, γ and ν are to be reduced as described above.
To avoid the determination of the degrees of the polynomials l(s) and q(s), we take ν = 0

and γ = n + nm (or γ = n) in the frequency Eqs. (30). Solving them, we obtain the factorized
polynomials δ1(s) (or δ2(s)). Then the closeness condition (44) is replaced by the condition for the
closeness of the assumed and identified factorized polynomials

|δ[i]1,j − δ
[i]
1,j(τi)|

|δ[i]1,j |
≤ ε1,j, or

|δ[i]2,k − δ
[i]
2,k(τi)|

|δ[i]2,k|
≤ ε2,k, δ

[i]
1,j �= 0, δ

[i]
2,k �= 0

(i = 2, N, j = 1, n + nm, k = 1, n),

(45)

where ε1,j and ε2,k (j = 1, n+ nm, k = 1, n) are sufficiently small given numbers.
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6. CONVERGENCE OF THE ADAPTATION PROCESS

Asymptotically Stable Closed-Loop System

For the adaptation process of an asymptotically stable system to converge (for the closeness
conditions (44) and objective condition (7) to hold), it is sufficient that the adaptation intervals
be extensible and the perturbation f(t) be strictly filterable by a Fourier filter [10], because any
accuracy of identification of system (1) can be attained under these conditions.
The first condition implies that adaptation interval lengths satisfy the inequality

τi ≥ τi−1 + τ∗ (i = 2, N ), (46)

where τ∗ is a given number. The condition of strict Fourier filterability implies that the test signal,
external disturbance, and defining signal be not of the same frequency:

ωi �= ωf
k , ωi �= ωr

j (i �= k, i �= j, k = 1,∞, j = 1,∞). (47)

These inequalities can be experimentally verified [10].
If the assumption that the closed-loop is asymptotically stable on all adaptation intervals is

satisfied, then conditions (46) and (47) are sufficient for the adaptation process to converge.

Unstable Closed-Loop System

Let system (39) be unstable on the second adaptation interval. After verifying this fact exper-
imentally, controller (35) is disconnected and operations of the first interval are repeated on the
third interval, which, according to (46), has a large length. The stability of the closed-loop system
on the next adaptation interval is verified. If it is unstable, the controller is disconnected and this
process is repeated until such a duration of identification of system (1) is obtained, in which an
identification accuracy sufficient for finding the stabilizing controller is attained.
It is not a simple matter to realize this algorithm, because there are constraints on the permissible

inputs and outputs of system (1)

|y(t)| ≤ y∗, |u(t)| ≤ u∗, t ≥ t0, (48)

where y∗ and u∗ are given numbers.
In this case, Procedure 6.1 consisting of the following operations is constructed.
(a1) Procedure 4.1, which terminates at instant t1 when the limiting value |y(t1)| = y∗ or

|u(t1)| = u∗ is attained.
(b1) The degree λ[2] of instability of “system” (39) is determined in the second adaptation

interval, which consists of several subintervals in which λ[2] is determined by a simple algorithm
(not described here).
(c1) If λ[2] �= 0, then the operations described in Section 4 are implemented for λ = λ[2] in

the third adaptation interval. Operation (c) terminates when the limiting permissible value of y∗

or u∗ is attained, and operation (d) generates a controller for the next adaptation interval, in
which the degree of instability of the closed-loop system is determined once again. This process is
repeated until a stabilizing controller (λ[N1+1] = 0) is obtained in some N1th adaptation interval.

Termination of the Adaptation Process

Let us determine the termination instant tN of the adaptation process. Every adaptation interval
on which the system is closed by a stabilizing controller begins with the verification of the objective
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condition (7) in a certain time. For example, verification in the second adaptation interval is
implemented on the subinterval [t1, t1+t∗2], where t

∗
2 is a given positive number. Let f(t) = r(t) = 0

in this subinterval. These time functions are bounded at other instants. Hence functions (2) and (5)
can be expanded as Taylor series on the interval [t0, t∗] (t∗ is the instant when the operation of
the system terminates). Since f(t) = r(t) = 0 ([t1 ≤ t ≤ t1 + t∗2]), aim (7) is attained with any
stabilizing controller. If conditions (i)–(iv) hold at some instant t2 = t1+t∗2+τ2, then the adaptation
process also terminates. But the objective condition (7) may be violated at some instant t > t2.
Then operation (d) is implemented, which generates controller polynomials for the third adaptation
interval. This implies that adaptation intervals may be of the form ti − ti−1 = t∗i + τi+ t

∗∗
i (i ≥ 2),

where ti−1 + t∗i + τi is the instant at which adaptation termination conditions were satisfied and ti
is the instant at which the objective condition (7) was violated. Hence the objective condition (7)
is not violated, beginning from the instant tN . Hence we have

Assertion 6.1. Adaptation process converges if the expandability condition (46) for adaptation
intervals holds, test frequencies satisfy inequalities (47), and an adaptation interval N1 yielding a
stabilizing controller under constraints (48) exists.

7. AN EXAMPLE

Let us consider the minimal-phase system described by the equation

ÿ + d1ẏ + d0y = k1u̇+ k0u+ f, (49)

where d1, d0, k1, and k0 are unknown numbers, f(t) is a polyharmonic disturbance of the type (2),
and the sum of its amplitudes is bounded by f∗ = 5.
The reference model is described by the equation

ÿm + 5 ˙ym + 6ym = ṙ + r, (50)

where the polyharmonic signal of the type (5) is bounded by r∗ = 40.
Our problem now is to find the coefficients of the controller

(dc,3s
3 + dc,2s

2 + dc,1s+ dc,0)u = (kc,3s
3 + kc,2s

2 + kc,1s+ kc,0)e, (51)

which ensures, beginning from a certain instant tN , that the difference between the outputs of the
system and reference model satisfies the condition

|y(t)− ym(t)| ≤ 1, t ≥ tN . (52)

Remark 7.1. In the experimental results given below, d0 = −1, d1 = 0, k1 = 1, k0 = 2,
f(t) = 5 cos 4.6t, and r(t) = 20 cos 2.5t + 20 cos 5t are the values of coefficients of the system,
external disturbance, and defining signal drawn from [4].
By Eqs. (49) and (50) of the system and reference model, inequalities (18) hold. Therefore, q11

can be determined from formula (22).
Below we give the results obtained in the course of adaptation by controller (51) (only the

operations a, b, etc. of Procedure 4.1 are shown).
First adaptation interval. (a) system (49) was excited by the test signal u(t) = 0.1 exp(1, 1t)

(sin 2t+ sin 4t),
(b)–(c) the estimates

d
[1]
1 = 0.566, d

[1]
0 = −6, k

[1]
1 = 3.06, k

[1]
0 = −1.75 (53)

of its coefficients were generated at the instant τ1 = 2Tb

(
Tb = 2π

2

)
,
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(d) the controller for the second adaptation interval constructed for q11 = 10 is of the form

(3.06s3 + 13.5s2 + 9.61s − 10.5)u = −(11s3 + 72.4s2 + 154s + 106)e + v[2], (54)

(e) the factorized polynomial of system (49), (50), (54) is

δ
[2]
1 (s) = (s

4 + 16.6s3 + 72.5s2 + 127s + 70). (55)

Second adaptation interval. (a) System (49), (59) was excited by the test signal v[2](t) =
103(sin 2t+ sin 4t+ sin 5t+ sin 8t+ sin 10t),
(b)–(c) estimates

δ
[2]
1,4 = 1, δ

[2]
1,3 = 6.39, δ

[2]
1,2 = 21.1, δ

[2]
1,1 = 50.9, δ

[2]
1,0 = 35.5 (56)

d
[2]
1 = −0.126, d[2]

0 = −0.89, k[2]
1 = 1.01, k[2]

0 = 1.87 (57)

for the coefficients of the factorized polynomial and system were generated at the instant τ2.
The coefficients of polynomial (55) and identified coefficients (56) were used in verifying closeness

conditions (45) for ε1,j = 0.5 (j = 1, 4). These conditions were violated. Moreover, modeling of
system (49), (50), (54) has shown that tracking accuracy condition (52) was also violated. Therefore
adaptation was continued.
(d) The controller for the third adaptation interval constructed with estimates (56) for q11 = 100

is of the form

(1.01s3 + 6.95s2 + 15.4s + 11.2)u = −(98s3 + 287s2 + 284s + 94.5)e + v[3]. (58)

(e) The factorized polynomial of system (49), (50), (58) is

δ
[3]
1 (s) = (s

4 + 102s3 + 292s2 + 279s + 89.2). (59)

Third adaptation interval. (a) System (49), (50), (58) was excited by a test signal v[3] = v[2].
(b)–(c) Estimates

δ
[3]
1,4 = 1, δ

[3]
1,3 = 148, δ

[3]
1,2 = 418, δ

[3]
1,1 = 407, δ

[3]
1,0 = 121 (60)

for the coefficients of the factorized polynomial were generated at the instant τ3 = τ2.
Comparing them with the coefficients of polynomial (59), we find that the closeness condi-

tions (45) are satisfied. Modeling of system (49), (50), (58) has shown that tracking accuracy
condition (52) is also satisfied. Consequently, the unknown controller is of the form (58), where
v[3] = 0.

APPENDIX

Proof of Assertion 3.1. Let us express the objective condition (7) in terms of the parameters
of system (10), (11). For this purpose, let us write relation (15) as e = er + ef , where er = Ter(s)r
and ef = Tef (s)f .
Using expressions (2) and (5) for the functions r(t) and f(t), we can write

er(t) =
∞∑
i=1

ar(ωr
i ) sin(ω

r
i t+ ϕr

i ), ef (t) =
∞∑
i=1

af (ω
f
i ) sin(ω

f
i t+ ϕf

i ) as t→ ∞, (61)

where ar(ωr
i ) = |Ter(jωr

i )|ri and af (ω
f
i ) = |Tef (jω

f
i )|fi (i = 1,∞).

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 5 2004



766 ALEKSANDROV

Obviously,

|er(t)| ≤
∞∑
i=1

|Ter(jωr
i )‖ri|, |ef (t)| ≤

∞∑
i=1

|Tef (jω
f
i )‖fi|. (62)

By virtue of bounds (3) and (6), the objective condition (7) can be expressed as

|e(t)| ≤ |er(t)|+ |ef (t)| ≤ ‖Ter‖r∗ + ‖Tef‖f∗ ≤ e∗, (63)

where ‖Ter‖ = max
0≤ω<∞

|Ter(jω)| and ‖Tef‖ = max
0≤ω<∞

|Tef (jω)|. The numbers ‖Ter‖ and ‖Tef‖ are
the H∞-norms of the transfer functions Ter(s) and Tef (s), respectively.
For the objective condition (7) to hold, it is sufficient that

(j) ‖Ter‖ ≤ e∗

2r∗
, (jj) ‖Tef‖ ≤ e∗

2f∗
. (64)

Let us verify that controller (11), (20) ensures condition (j). Substituting polynomials (20) into
expression (16) for the transfer function Ter(s), we obtain

Ter(s) =
km(s)d(s)
δ1(s)

. (65)

By virtue of identity (21) and inequality dm(−jω)dm(jω) ≥ 0,

Ter(−jω)Ter(jω) =
km(−jω)km(jω)

dm(−jω)dm(jω) + q11km(−jω)km(jω)
≤ 1
q11

. (66)

Hence, by virtue of (22), ‖Ter‖ ≤ 1
√
q11

≤ e∗

2r∗
.

Now we verify that controller (11), (20) ensures condition (jj). Substituting polynomials (20)

into expression (17) for the transfer function Tef (s), we obtain Tef (s) =
dm(s)
δ1(s)

. By virtue of

condition (18) and inequality dm(−jω)dm(jω) ≥ 0,

Tef (−jω)Tef (jω) =
dm(−jω)dm(jω)

q11d(−jω)d(jω)km(−jω)km(jω)
≤ 1

q11
f∗2

r∗2

. (67)

Hence, by virtue of (22), ‖Tef‖ ≤ e∗

2f∗
.

Proof of Assertion 3.2. Let us verify that controller (11), (23) ensures condition (jj). Substi-
tuting polynomials (23) into expression (17) for the transfer function Tef (s), we obtain

Tef (s) =
1

δ2(s)
. (68)

By virtue of identity (24) and inequality d(−jω)d(jω) ≥ 0,

Tef (−jω)Tef (jω) =
1

d(−jω)d(jω) + q22
≤ 1
q22

. (69)

Now, by virtue of (25), ‖Tef‖ ≤ 1
√
q22

≤ e∗

2f∗
.
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Let us verify that controller (11), (23) ensures condition (j). Substituting polynomials (23) into
the expression for the transfer function Ter(s), we obtain

Ter(s) =
km(s)d(s)
dm(s)δ2(s)

.

By virtue of condition (19) and inequality d(−jω)d(jω) ≥ 0,

Ter(−jω)Ter(jω) =
km(−jω)km(jω)d(−jω)d(jω)

q22dm(−jω)dm(jω)
≤ f∗2

q22r∗2
. (70)

Hence, by virtue of (25), ‖Ter‖ ≤ e∗

2r∗
.
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