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Abstract: We consider robust stabilization of linear MIMO systems, whose physical parameters are 
allowed to deviate from the nominal ones within known bounds, and the control plant is subjected to 
unknown power-bounded polyharmonic external disturbances (with unknown amplitudes and frequencies). 
The problem is to design a robustly stabilizing controller such that the prespecified errors for the controlled 
variables in steady state are guaranteed. The solution is based on the “loop-breaking technique” of the 
plant-controller system with respect to the physical parameters, e.g. Chestnov (1999); it reduces to the 
standard H -optimization procedure by properly choosing the weighting matrix at the controlled variables. 
This approach is implemented numerically in the MATLAB-based Robust Control Toolbox (RCT). 
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1. INTRODUCTION 

Robust stabilization of systems subjected to deviations of the 
parameters from their nominal values is the subject of 
numerous papers and books; e.g., see Ackermann (1993), 
Barmich (1994), Bhattacharyya et al. (1995), Zhou, et al. 
(1995), Zhou, et al. (1998). At the same time, as a rule, the 
majority of the papers consider the model parameters as the 
entries of the matrices in the state space equations or the 
coefficients of the transfer matrix of the plant. Generally 
speaking, these cannot be associated with the physical 
parameters of the plant, since both state-space equations and 
transfer matrix are secondary description tools for dynamic 
systems. Indeed, they are derived by converting the original 
equations of the dynamic system formulated from the 
fundamental laws of physics (mechanics, electro-dynamics, 
etc.). In this work, we deal with the parameters of such an 
intrinsic description, which have a transparent physical 
meaning, such as mass, moment of inertia, ohmic resistance, 
capacitance, inductance, etc. Moreover, as a rule, such a 
conversion of the original physical description leads to 
``mixing’’ and ``duplication’’ of the varying parameters and 
hence, to a considerable complication of the problem and 
essentially conservative end-results. 

In practice, real dynamic systems are affected by unknown 
external disturbances; in the mathematical control theory 
these disturbances are usually assumed to be bounded in 
certain norm, (e.g., see Chestnov (2011), Skogestad et al. 
(2007), Zhou et al. (1995), Zhou et al. (1998).   

The approach developed here leans on the representation of 
dynamic systems in the so-called canonical (W, , K)-form, 
(see Chestnov (1985), Chestnov (1995), Chestnov (1999)) 
such that, in the plant, the physical parameters (subjected to 
deviations from their nominal values) make up internal 

fictitious feedback loops in the form of the diagonal  
matrix.  

Unknown  external  disturbances  are  taken  in  the  form  of  
polyharmonic signals (with unknown amplitudes and 
frequencies), which are assumed to be power-bounded (i.e., 
for every coordinate of the disturbance, the sum of the 
squared amplitudes of each polyharmonic component is 
bounded). Similarly to Chestnov (2011), for the dynamic 
system we introduce the notion of the radius of the steady 
state with respect to the controlled variables. On top of robust 
stability, the desired controller must guarantee the specified 
(or, the minimal possible) value of the radius. 

We show that such a problem reduces to the standard 
problem of rejection of exogenous disturbances in the 
framework of H -approach (see Doyle et al. (1989)) by 
appropriately choosing the weighting matrix at the controlled 
variables of the plant. 

This approach is implemented numerically as a code in the 
MATLAB-based Robust Control Toolbox (see Balas et al. 
(2010)). The idea of robust design using the (W, , K)-
representation was first proposed in Chestnov (1999), while 
the account for the accuracy is similar to the one in 
Aleksandrov, Chestnov (1998, a,b), Chestnov (2011). The 
design methodology is exemplified through the benchmark 
problem borrowed from in Haddad et al. (1993) and  Farag et 
al. (2002). 

2. STATEMENT OF THE PROBLEM 

We consider a control plant described by the following 
equations in the physical variables: 
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where z0 is the l-dimensional vector of the physical variables 
of the plant (velocity, acceleration, current, displacement, 
angle of rotation, etc.);  u is the m-dimensional control input;  
y is the m2-dimensional vector of observable (controllable) 
variables of the plant, f is the m3-dimensional vector of 
external disturbances; N is a known numerical matrix of 
dimension (m2 l); L1(p), L2(p), L3(p) are polynomial matrices 
of dimensions (l  l), ( l  m),  (l  m3), respectively, in the 
differentiation operator p = d/dt: 
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1 ,, kji LLL are known real matrices of compatible 

dimensions. 

In what follows, it is assumed that plant (1) is stabilizable and 
detectable, and its equations correspond to the original, 
``least transformed’’ description obtained from the 
fundamental laws of physics. In the sequel, the entries of the 
matrices will be referred to as the physical parameters of the 
plant. It is also assumed that n of the parameters entering (1) 
have nominal values 1, 2, …, n  and are allowed to vary in 
the given intervals: 

              ),,( maxmin
iiii   i = n,1 ,              (2) 

where i  is the deviation of the i-th parameter from its 
nominal value. 
Matrix elements )(3 pL leave unaffected the stability of the 
closed-loop system, and therefore the deviations from the 
calculated not further considered here. 

The coordinates of the vector external disturbance f are 
represented by bounded polyharmonic functions of the form 
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Here, the amplitudes ikf , the initial phases ik ( 3,1 mi , 

0,1 pk ), and the frequencies k ( 0,1 pk )  of  the  
harmonics are not known; however, the amplitudes satisfy the 
bounds 
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where 0 is a known number of harmonics, and the numbers 

iw ( 3,1 mi )  are given. 
We define the steady-state errors with respect to the 
controlled variables by the following relation: 

,)(suplim, tyy itsti   2,1 mi .                 (5) 

Require that the output feedback controller provides the 
following conditions: 

,*
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where 0iy , 2,1 mi , are given numbers. 

Clearly, there might exist no such controllers (see 
Aleksandrov et al. (1998, a)). Introduce the notion of the 
steady-state radius for the closed-loop system with respect to 
the controlled variables (e.g., see Aleksandrov, Chestnov 
(1998, b), Chestnov (2011)): 
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which will be limited. 

Problem 1: Synthesize a stabilizing output feedback 
controller 
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with the proper transfer matrix )( pK  such that the following 
holds: 

   (i) for given finite deviations of the parameters 1, 2,…, n  
from the nominal (2), the closed-loop system retains the 
asymptotic stability; 

   (ii) the steady-state radius for the controlled variables 
satisfy    

       22
str ,                                   (9) 

where  is a given (or minimal possible) number. 

Obviously, for the problem to possess a solution, the 
assumption should be adopted on the retention of 
stabilizability and detectability of plant (1) under variations 
of the parameters within intervals (2). 

To solve the problem, we follow the ``loop-breaking’’ 
technique with respect to the varying parameters (e.g., see 
Chestnov (1999)) and represent the closed-loop equations (1), 
(8) in the diagonal canonical (W, , K) – form with account 
for external disturbance (3). 

3. THE CANONICAL (W, , K)–FORM 

The canonical (W, , K)-representation of the closed-loop 
system with external disturbances has the form (see Chestnov 
(1985), Chestnov (1995), Chestnov (1999)): 
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where Wij(s) (i=1,2, j=1…3) are known transfer matrices 
which do not contain the varying parameters; u,  y are, 
respectively, the physical input and output of plant (1); yu ~,~   
are n - dimensional fictitious input and output of the plant;  

=diag[ 1, 2, …, n] is the diagonal matrix of the parameters 
subjected to deviations around the nominal; K is  the  desired  
transfer matrix of controller (8).  

The block-diagram associated with representation (10) is 
depicted in Figure 1.  
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Fig. 1: Block-diagram of the system (10) 

Theorem 1: The closed-loop equations (1), (8) can always be 
represented in the equivalent (W, ,K) – form (10). 

The proof is of constructive nature (see Chestnov (1995)). 

Notice that the first proposed (W, , K)-form (see Chestnov 
(1985)) significantly differs from proposed (M, )-
configuration (see Safonov (1981), Safonov (1982), Doyle 
(1982), Doyle (1983)). 

The deviations of the parameters are taken out in the (M, )-
configuration. The main difference the (W, , K)-form is the 
parameters are taken out of the plant in  the  (W,  ,  K).   It  
allows using not only small-gain theorem but the Nyquist 
criteria and its generalizations. 

4. APPROACH TO SOLVE THE PROBLEM 

At first we consider the approach to the fulfillment of the 
condition (i), however, the accuracy requirements (9) 
omitted. 

The transfer matrix of open-loop system (10) of variable 
parameters  )( ,nii 1 , when breaking is the vector u~ , can 
be written as: 
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As seen from (11) feature of the transfer matrix is that the 
variable parameters are diagonal matrix of the gains in it. 

If this frequency transfer matrix satisfies the inequality 
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where I is the identity matrix of appropriate size; r is radius 
of stability margins (0 < r  1) . 

Then the following sufficient estimators for intervals of 
possible values of the parameters is the case (see Chestnov 
(1985), Chestnov (1995), Chestnov (1999)): 
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which guarantee the robust stability of the system (1), (8). 

In the single variable case (n = 1), fulfillment of the 
inequality (12) implies that the Nyquist diagram )(

~
jW u  

don’t crossing the circle of radius r centered at the critical 
point (-1, j0) in the hodograph plane. 

In the multivariable case (n > 1) frequency condition (12) has 
the following physical interpretation: the gains you can vary 
from the nominal unit value in the range (1/(1 + r), 1/(1 - r)), 
independently of the other gains, without loss of the stability 
for each of the fictitious inputs of the plant (see Lehtomaki et 
al.(1981)) )(  , ,niui 1~ . This implies the boundaries of robust 
stability (13). 

Thus, the solution the first part (i) of Problem 1 is reduced to 
such a construction of the matrix K of the controller (8), that 
the number r takes required value or maximized. This  
problem was solved in Chestnov (1999).  

5. REDUCING THE PROBLEM TO THE STANDARD H -
PROBLEM 

We show that the problem of ensuring the given radius of 
stability margins r, or its maximization (0 < r  1) as well as 
the guaranteeing of the prespecified steady-state radius, is 
reduced to a standard problem of H  optimization.  

Here, in contrast to Chestnov (1999) the effect of the 
disturbances f is taken into account. 

Consider the closed-loop system shown in Fig. 2. 

 
Fig. 2 – Block-diagram of the closed-loop system  

We introduce extented vector of the disturbances and 
extented vector of the controlled output as components  
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and consider the reduction of the Problem 1  to the standard 
problem of H  optimization.  

The system on Fig. 2 is described by the following equations: 
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The transfer matrix of the closed-loop system, connecting the 
vector z and w, denoted as Tzw:  
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Let the sought controller K(s) solves the  H -problem:  

zwT .                            (16)  

Then each of the blocks of the matrix satisfies the same 
condition, in particular 

yfwz TQT 2/1            ,
11

.                        (17)    

The first of the inequalities (17) in the frequency form is 
equivalent to (12), where  r=1/    (see Chestnov (1995)). 

The second inequality (17) also can be represented in the 
equivalent frequency form  

][0,     ,)()( 2IjQTjT yf
T
yf .                 (18) 

Given the diagonal structure of the matrix Q and the lemma 
of  the  steady-state  values  (see  Aleksandrov  et  al.  (1998,  a),  
Chestnov (2011)); we obtain the following inequality for the 
steady-state errors of controlled variables 
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where *w  is the Euclidean norm of the vector w* with the 

components of the right part of (4).  

Then, choosing the elements of the weight matrix Q from 
equalities 
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will come to fulfillment of the condition (9). 

Thus,  solving  the  H -problem (16), we achieve a resolution 
of the problem 1. 

The problem of finding the proper transfer matrix of the 
controller )(sK , which ensures that the inequalities (9) and 
(12)  are  satisfied,  can  be  rewritten  as  the  following  H  
control problems . 

Problem 1.1 (Optimal H  control):  Find proper transfer 
matrix of the controller (8), which would ensure the validity 
of (9) and (12) with the least possible 0 . 

Problem 1.2 (Suboptimal H  control): Given the number 
0
 find the proper transfer matrix controller (8) such that 

the inequalities (9) and (12) are satisfied. 

If the problems 1.1 and 1.2 are solved, then the radius of 
stability margins 1r , and sufficient estimation at the 
intervals of possible values of the parameters, which 
guarantee the robust stability of the system (1), (8), follows 
from (13). 

Let's give the equations (14) we write in the standard form, 
adopted in the H  theory: 

.,, 22211211 KyuuGwGyuGwGz           (20) 
The transfer matrix Gij(s) we obtain from (14). 

The transfer matrix Gij(s) (i, j = 1,2) of the generalized plant 
are associated with the transfer matrix equations (14) by 
equalities: 
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These transfer matrices are derived of (14) by the simple 
substitution. 

6. DESIGN PROCESS 

Represent the synthesis procedure in the following sequence. 

1. Bring the system equation (1), (8) to (10), where  - a 
diagonal matrix, which includes the selected designer ratings 
of the physical parameters of the system, subject to 
deviations from the nominal values. 

2. Write (14) in the standard form, (20) adopted in the theory 
H  control, taking into account (21) and brings it to the state-
space equations. 

3. To solve the problem of optimal or suboptimal H  control 
(16) with (19) and to find the transfer matrix controller (8) 
K(s). 

4. Find a guaranteed tolerance limits on the parameters of the 
plant by (13) and steady-state errors with respect to the 
controlled variables from (9). 

5. Compare found in Item 4 with the specified tolerance 
limits (2) and (6). 

7. EXAMPLE 

We illustrated the proposed method of synthesis by the 
example of a two-mass system (two carriages connected by a 
spring), which was used as a benchmark problem (e.g., see 
Haddad et al. (1993)) for many methods of synthesis of 
robust systems. 

The equations of the plant are as follows: 

,,,, 2142134231 qxqxxfuqxqxxxxxx  

where q is the interval parameter (nominal q=0.8) (rigidity of 
spring), u is the control, and 2xy is the measured variable. 

According to the synthesis procedure of Sec. 6, we reduce the 
equations of the plant to the canonical form (10) and 
introduce to this end the notation 

.,~),(~
1212 qxxyxxqu  

After simple transformations, we rewrite the equations of the 
plant in the form: 
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2 2 2

2 1 1, , , ( ) ,y u u f y u u y u K s y
s s s

where ( )K s is the unknown transfer function (since u and y 
are scalars) of the controller, and the diagonal matrix  is 
just a scalar  coinciding with the parameter q. One can 
easily see last form that the elements of the transfer matrix 

)(sW  are scalar transfer functions 

11 12 13 21 22 232 2 2

2 1 1, , , 0.W W W W W W
s s s

 
We obtain this form, by means of (21), the elements  of the 
transfer matrix )(sG of the generalized plant of the standard 
H -configuration (20), in particular 

)2(
)( 2222 qss

qsG . 

We note that )(22 sG  is  the   transfer  function  of  the   
controlled plant )( yu ; its characteristic polynomial 

)2()( 22 qsssd  has  a  double  zero  root  and  two  purely  
imaginary complex-conjugate roots. 

To solve the problem of synthesis we reduce the equations of 
the generalized plant (20) to equations in the state space  

uDwDxCyuDwDxCzuBwBAxx 222121211121 ,,
with regard for transfer matrix )(sG . 

This reduction results in 
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Since 02112 DD  we  deal  with  a  singular  problem.  The  
approach of Doyle J.C. et al. (1989) is unsuitable for the 
solution of problem (16).  For this purpose the method of 
linear matrix inequalities (LMI) in the package Balas G.J. et 
al. (2010)  is efficient. 

Let’s compare controller obtained by the method unaware of 
external disturbances (see Chestnov (1999)) and controller 
obtained by the suggested here approach.  

The transfer function of the controller obtained with the 
method of Chestnov (1999) is 

4470117819512.17
697.5101.11280161225)(

234

823

1 ssss
ssssK  

and suboptimal  is 1.1701; 1r =0.8546. 

The transfer function of the controller constructed with the 
method proposed here is (Q=1, y*=1, w*=1, p0=1) 

762434

882838

2 101.6104.1102.27.193
106.1106.4102.4101.3)(

ssss
ssssK  

with suboptimal  is 1.1306;  1r =0.8845.  
 
Bode magnitude responses (Fig.3 and Fig.4) show that the 
worst external disturbance is step in both cases. 

 
Fig. 3 The bode magnitude response with the controller 
obtained with the method of Chestnov (1999) 

 
Fig. 4 The bode magnitude response with the controller 
constructed with the method proposed here 

 
Fig. 5 The step response with the controller obtained with the 
method of Chestnov (1999) 
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Fig. 6 The step response with the controller constructed with 
the method proposed here 

Note that for the  controller 1( )K s  obtained with the method 
of Chestnov (1999) guaranteed bounds on the parameter q 
are: 0.4314<q<5.5022. For the controller constructed with the 
method proposed here 2 ( )K s  guaranteed bounds on the 
parameter q (found from (13))   are: 0.4245<q<6.9264, which 
is wider.  Both tolerances are better than that of  known (e.g. 
see Haddad et al. (1993) and Farag et al. (2002)). The steady 
state error for the controller 2 ( )K s (see Fig. 6) is significally 

better than the one for the controller 1( )K s  (see Fig. 5 ). 

8. CONCLUSIONS 

We note the advantages of these results. 

1. Consideration is given to the deviations of the physical 
parameters from the nominal ones. 

2. The optimization criterion (radius of the stability margin 
and steady-state radius) has a clear engineering meaning. 

3. The synthesis procedure is eventually reduced to some 
standard problem of H -optimization.  

4. The order of the controller obtained as result of synthesis 
does not exceed that of the initial physical plant. This is 
important for practical applications. 
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