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Abstract—We consider the robust stabilization problem for linear multivariable systems whose
physical parameters may deviate from computed (nominal) in some known bounds, and the
control object is subject to non-measurable polyharmonic external disturbances (with unknown
amplitudes and frequencies) bounded in power. We pose the problem of synthesizing a controller
that guarantees robust stability of the closed-loop system and additionally ensures given errors
with respect to controlled variables in the established nominal mode. The solution of this
problem is based on the technique of opening the object–controller system with respect to
varying object parameters and can be reduced to a standard H∞-optimization procedure, while
the necessary accuracy is achieved by choosing the weight matrix for controlled object variables.
We show the solution for a well-known benchmark problem.
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1. INTRODUCTION

The robust stabilization problem for systems with parameters deviating from computed (nom-
inal) values has been the subject of a large number of studies; see, e.g., [1–5]. At the same time,
most works usually consider as model parameters either elements of state equation matrices or
coefficients of transfer functions that comprise the object’s transfer matrix. Generally speaking,
these parameters are not physical since state equations and the transfer matrix are secondary forms
for describing dynamical systems. They result from a transformation of the original equations of
the dynamical system based on fundamental physical laws of mechanics and electrodynamics. In
this work, we consider parameters of this original description form that have a clear physical mean-
ing (mass, moment of inertia, resistance, capacity, inductivity and so on). Besides, a transition
from the original description form in physical variables to a different form is usually accompanied
by “mixing” and “multiplying” the varied parameters which significantly complicates the original
problem and makes the end result much more conservative [1].

Usually real life dynamical systems are subject to non-measurable external disturbances which
in mathematical control theory are bounded with respect to some norm [4–7]. Under disturbances,
controlled variables of the control object deviate from their nominal values (which are zero in the
stabilization problem), and therefore there arises the problem of providing given deviations (no
more than is admissible) of these variables from zero [6]. The problem of suppressing external
disturbances has been the subject of many studies [4–9]. In particular, the work [7] develops
the method of invariant ellipsoids for external disturbances bounded either in Euclidean norm or
componentwise at every time moment. One also has to take into account constraints on controlling
signals and nonzero initial conditions. Theoretical and numerical results are based on the method
of linear matrix inequalities (LMI) [5].
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Similar directions of study, initiated by publications [8, 9], present a certain additional circuit
that lets one estimate the external disturbance and then compensate for it. Here we make various
assumptions regarding the object’s properties: stable [8] and/or minimal phase [8, 9]. One typical
complication in these approaches is that a part of controlling device parameters can be found during
its synthesis only at the stage of mathematical modeling for the closed-loop system.

The approach developed in this work is based on representing the dynamical system in the
so-called canonical (W , Λ, K)-form [1, 10, 11] (first proposed in [10]), where physical parameters
subject to deviations from the computed ones form internal dummy feedback in the form of a diago-
nal matrix Λ. This method, thanks to its engineering clarity and simple numerical implementation,
can be viewed as a significantly simpler alternative to J. Doyle’s μ-approach [4, 12–15], which is
very computationally intensive, not too efficient for real-valued uncertainties (real-μ) [4, 13], and
leads to controllers of very high order (see, e.g., [15], where a second order object has a controller
of order 22!).

As non-measurable external disturbances we consider polyharmonic power-bounded distur-
bances. Similar to [16, 17], we use the notion of a radius of the steady state for a dynamical system
with respect to controlled variables (which characterizes accuracy), and the controller, apart from
robust stability, must also ensure a given radius or minimize it.

Our solution for the robust stabilization problem is original; it is based on a frequency matrix
inequality that determines multivariable gain margins after the closed system breaking with respect
to parameters (with a dummy control variable ũ in the (W , Λ, K)-form), unlike classical opening
points: physical object input or output. This frequency condition reduces to standard problem of
meeting external disturbances in the H∞ approach [1], and the given accuracy is achieved with
a special choice of the weight matrix for controlled object variables similar to [16, 17]. We have
implemented this approach in the MATLAB software suite with the Robust Control Toolbox [12];
our implementation uses the LMI technique. We show a sample controller synthesis for a wide
known benchmark problem from [1, 12, 13].

2. STATEMENT OF THE PROBLEM

Consider a control object defined by the following equations in physical variables:

L1(p)zf (t) = L2(p)u(t) + L3(p)f(t),

y(t) = Nzf (t),
(2.1)

where zf is the l-dimensional vector of physical object variables (velocity, acceleration, current,
voltage, movement, angle of rotation and so on); u, an m-dimensional vector of control influ-
ences; y, an m2-dimensional vector of measured (and at the same time controlled) object variables;
f , a μ-dimensional vector of external bounded non-measurable disturbances; N , a known numer-
ical matrix of size m2 × l; L1(p), L2(p), L3(p), polynomial matrices of size l × l, l ×m, and l × μ
respectively of the differentiation operator p = d/dt:

L1(p) =
α1
∑

i=0

L
(i)
1 p

i, L2(p) =
α2
∑

j=0

L
(j)
2 pj, L3(p) =

α3
∑

k=0

L
(k)
3 pk, (2.2)

where L
(i)
1 , L

(j)
2 , L

(k)
3 are known real matrices of the corresponding dimensions, α2, α3 < α1.

We will assume that object (2.1) is stabilizable and detectable. In what follows we call elements

of matrices L
(i)
1 (i = 1,α1), L

(j)
2 (j = 1,α2) physical parameters of the control object. Suppose that

n physical parameters of the object (their number and location in the matrices is not constrained)
with nominal values λ1, λ2, . . . , λn can take values from given intervals

λi+Δλi ∈ (λmin
i , λmax

i ), i = 1, n, (2.3)
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where Δλi is the deviation of a parameter from nominal values, λmin
i , λmax

i are known lower and
upper bounds.

Elements of matrix L3(p) do not influence the stability of the closed-loop system, so their
deviation from nominal values are not considered below.

Components of the external disturbances vector f are bounded polyharmonic functions

f(t) =
p0
∑

k=1

wik sin(ωkt+ ψik), i = 1, μ. (2.4)

Here amplitudes wik, initial phases ψik (i = 1, μ, k = 1, p0), and frequencies ωk (k = 1, p0) of the
harmonics are not known, but it is known that amplitudes of the harmonics are subject to the
following condition (that bounds the power of each external disturbance component):

p0
∑

k=1

w2
ik � (w∗

i )
2, i = 1, μ, (2.5)

where p0 is a known number of harmonics, w∗
i (i = 1, μ) are given numbers.

We define steady state errors with respect to controlled variables with a relation from [6, 16]:
yi,st = limt→∞ sup|yi(t)| (i = 1,m2). Usually we want to find such stabilizing output controller
that inequalities (requirements on accuracy) yi,st � y∗i (i = 1,m2) hold, where y∗i > 0, i = 1,m2,
are given numbers. However, it is clear that such a controller may not exist, so we define the radius
of the steady state of the closed-loop system with respect to controlled variables with the following
relation:

r2st =
m2
∑

i=1

(

yi,st
y∗i

)2

, (2.6)

and we will bound this radius [16, 17].

Problem 1. Construct a stabilizing output controller

u(t) = K(p)y(t) (2.7)

such that, on one hand, for given finite deviations of parameters λ1, λ2, . . . , λn from computed (2.3)
the closed-loop system (2.1), (2.7) preserves asymptotic stability, and on the other hand it holds
that

r2st =
m2
∑

i=1

(

yi,st
y∗i

)2

� γ2, (2.8)

where K(p) is the controller’s transfer matrix whose elements are regular rational functions of the
operator p; γ is a given or minimized number.

It is easy to see that the equality sign in expression (2.8) (for given γ) corresponds to the
equation of a hyperellipsoid with given semiaxes whose surfaces belong to control errors. If as a
result of solving the synthesis problem we get γ � 1, then, obviously, requirements on the accuracy
are satisfied as well.

3. REDUCING THE SYSTEM TO CANONICAL (W , Λ, K)-FORM

To solve the problem posed above, we represent equations of the closed-loop system (2.1), (2.7)
in canonical (W , Λ, K)-form [1] accounting for the external disturbance f :

ỹ =W11ũ+W12u+W13f, ũ = Λỹ,

y =W21ũ+W22u+W23f, u = K(s)y,
(3.1)
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Fig. 1.

where Wij(s) (i = 1, 2, j = 1, 3) are known transfer matrices that do not contain varied parame-
ters (2.3); u, y are the physical input and output of the control object (2.1); ũ, ỹ are n-dimensional
dummy input and output of the control object; Λ = diag[λ1, λ2, . . . , λn] is the diagonal matrix
of control object parameters subject to deviations from nominal values; K(s) is the controller’s
transfer matrix (2.7) that we are looking for, where s denotes the Laplace transform.

The block-diagram of the (W , Λ, K)-form corresponding to Eqs. (3.1) is shown on Fig. 1.

Theorem 1. Equations of the closed-loop system (2.1), (2.7) can always be represented in equiv-
alent (W,Λ,K)-form (3.1).

Proof of Theorem 1 is constructive and yields an algorithm for constructing the (W,Λ,K)-form;
it is given in the Appendix.

4. AN APPROACH TO SOLVING THE PROBLEM [1]

The transfer matrix of the open-loop system (3.1) with respect to varied parameters λi (i = 1, n)
(when we open the system with respect to variable ũ) is written in the following form from [1]:

W ũ
open(s) = Λ

[

−W11 −W12K(I −W22K)−1W21

]

, (4.1)

where I is the unit matrix of the corresponding dimensions.

As we can see in (4.1), an important characteristic feature of this transfer matrix is that the
varied parameters form in it a diagonal matrix of gains.

If this transfer matrix satisfies a circular frequency inequality [10, 11]

[

I +W ũ
open(−jω)

]T [

I +W ũ
open(jω)

]

� r2I, ω ∈ [0,∞) (4.2)

(where r is the stability margin radius 0 < r � 1), then the following sufficient estimates on the
interval of possible values of parameters hold [1, 10, 11]:

min

{

λi
1 + r

,
λi

1− r

}

< λi +Δλi < max

{

λi
1 + r

,
λi

1− r

}

, i = 1, n (4.3)

and guarantee robust stability of the closed-loop system (2.1), (2.7).

In case n = 1 inequality (4.2) means [1] that the Nyquist diagram W ũ
open(jω) does not intersect

a circle of radius r centered at the critical point (−1, j0) on the hodograph plane. In case n > 1
this frequency condition has the following physical interpretation: with respect to each dummy
object input ũi(i = 1, n) (see Fig. 1) gains can be changed from the nominal value equal to one
independently of each other in intervals (1/(1+r), 1/(1−r)) without any loss of stability (similar to
the case n = 1). This implies the bounds (4.3) due to the diagonal structure of matrix Λ [1, 10, 11],
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since a change of the gains in the circuit can be recalculated into a deviation of the parameter itself
from its nominal value.

Thus, solving the first part of Problem 1 reduces to such a construction of matrix K for con-
troller (2.7) for which r in (4.2) takes a given value or is maximized. If under chosen nominal
values λi (i = 1, n) given intervals for parameters (2.3) turn out to be included into the corre-
sponding intervals (4.3), it means that the first part of Problem 1 is already solved. This problem
has been considered in [1]. The next step in solving Problem 1 is to additionally take into account
condition (2.8).

5. REDUCING THE PROBLEM TO A STANDARD H∞-OPTIMIZATION PROBLEM

Consider a closed-loop system presented on Fig. 2 and defined by the following equations:

ỹ =W11z1 +W12u+W13f, ũ = Λỹ, z1 = ũ+w1,

y =W21z1 +W22u+W23f, u = Ky, z2 = Q1/2y,
(5.1)

where w1 ∈ Rn is the vector of dummy external disturbances; z1 ∈ Rn is the vector of dummy
controlled variables; z2 ∈ Rm2 is the weighted vector of variables controlled with the diagonal matrix
Q = diag[q1, q2, . . . , qm2] with positive elements qi > 0 (i = 1,m2). Compared to the work [1], here
we additionally have an external disturbance f and a controlled variable z2.

Fig. 2.

We introduce the extended vector of external disturbances w which includes the vector of dummy
external disturbances w1 and the vector of disturbances f , together with the extended vector of
controlled variables z that unites vectors z1 and z2. We denote the transfer matrix of the closed-loop
system that relates these vectors by Tzw. Then we can write

z =

[

z1
z2

]

= Tzww =

[

Tz1w1 Tz1f
Q1/2Tyw1 Q1/2Tyf1

] [

w1

f

]

, (5.2)

where Tz1w1 is the transfer matrix that relates vectors w1 and z1 in the closed-loop system (5.2),
and the other elements Tzw are defined similarly.

Suppose that the stabilizing controller in question K(s) minimizes the H∞-norm of the transfer
matrix for the closed-loop system (5.2):

‖Tzw‖∞ � γ. (5.3)

Then each block in this matrix satisfies a similar condition [14], in particular,

‖Tz1w1‖∞ � γ and ‖Q1/2Tyf‖∞ � γ. (5.4)
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The first inequality from (5.4) can be represented as condition (4.2), where according to [1] we have

Tz1w1(s) = [I +W ũ
open(s)]

−1, and r = 1/γ. (5.5)

The second inequality from (5.4) can also be represented in equivalent frequency form [6, 17]:

TT
yf (− jω)QTyf (− jω) � γ2I, ω ∈ [0,∞). (5.6)

The frequency inequality (5.6) together with the diagonal structure of matrix Q and the lemma on
steady-state values [6, 17] yields an inequality for the steady-state values of controlled variables

m2
∑

i=1

qiy
2
i,st � p0γ

2‖w∗‖2, (5.7)

where ‖w∗‖ is the Euclidean norm of vector w∗ with components of the right-hand side of (2.5).

Choosing the elements of the diagonal weight matrix Q from equalities

qi =
p0‖w∗‖2
(y∗i )2

, i = 1,m2, (5.8)

we arrive at the objective condition (2.8), where γ is the realized value for the numerical solution
of problem (5.3).

We can reformulate the problem of finding a correct transfer matrix for controller K(s) that
would satisfy inequalities (2.8) and (4.2) in the form of the following auxiliary problems of H∞-op-
timal and suboptimal control.

Problem 2. Find a correct transfer matrix of controller (2.7) that would ensure inequality (5.3)
with minimal possible γ = γ0.

Problem 3. Given a number γ > γ0, find a correct transfer matrix of controller (2.7) such that
inequality (5.3) holds.

If Problems 2 or 3 have been solved, we can find from (4.3) sufficient estimates on the interval of
possible parameter values that guarantee robust stability of system (2.1), (2.7), where the stability
margin radius r = γ−1, and inequality (2.8) implies estimates on control errors that would certainly
be no worse than

yi,st � γ y∗i , i = 1,m2. (5.9)

Comparing the resulting intervals with given intervals, we can conclude that Problem 1 has been
successfully solved. Thus, we can formulate the following statement.

Theorem 2. Suppose that controller (2.7) resolves the auxiliary H∞-problem (5.3) when diagonal
elements of the weight matrix Q are taken from equalities (5.8). Then the value of γ realized in
the numerical solution of this problem will determine: a) the stability margin radius r = γ−1 that
guarantees sufficient robust stability boundaries (4.3); b) sufficient estimates on control errors (2.8),
and (5.9).

Let us now write Eqs. (5.1) in a standard form used in H∞-control theory:

z = G11w +G12u, y = G21w +G22u, u = Ky,

where Gij(s) (i, j = 1, 2) are blocks of the generalized object’s transfer matrix G(s).
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1042 CHESTNOV

Assertion. Transfer matrices Gij(s) (i, j = 1, 2) of the generalized object are related to transfer
matrices of Eqs. (5.1) by the following equations:

G11 =

[

(I − ΛW11)
−1 (I − ΛW11)

−1ΛW13

Q1/2W21(I − ΛW11)
−1 Q1/2W21(I − ΛW11)

−1ΛW13 +Q1/2W23

]

,

G12 =

[

(I − ΛW11)
−1ΛW12

Q1/2W21(I − ΛW11)
−1ΛW12 +Q1/2W22

]

,

G21 =
[

W21(I − ΛW11)
−1 W21(I − ΛW11)

−1 ΛW13 +W23

]

,

(5.10)

G22 =
[

W21(I − ΛW11)
−1ΛW12 +W22

]

.

The proof of this assertion is elementary and is not shown here.

Thus, solving the H∞-problem (5.3) we solve the original Problem 1.

Note that from the computational point of view it makes sense for the solution of problem (5.3)
to reduce generalized object to state equations [1]:

ẋ = Ax+B1w +B2u,

z = C1x+D11w +D12u,

y = C2x+D21w +D22u,

(5.11)

where dimension of the state vector x coincides with the degree of characteristic of the polynomial
object (2.1): detL1(s). It is obvious now that the vector of controlled variables z will not contain
control influences, and there are no measurement noises. This means that problem (5.3) is singular
[1, 18] and, consequently, cannot be solve with the 2-Riccati approach [19]. To solve such a singular
problem numerically, it is convenient to use the method of linear matrix inequalities implemented
in a MATLAB package [12] (similar to [1, 20]).

6. THE SYNTHESIS PROCEDURE

We represent the synthesis procedure as a sequence of actions.

1. Reduce equations of system (2.1), (2.7) to the form (3.1), where Λ is the diagonal matrix
that includes nominal physical parameters of the system chosen by the designer, parameters that
will be subject to deviations from nominal values.

2. Write Eqs. (5.1) in standard form which is common in H∞-control theory taking into ac-
count (5.10) and reduce this form to state Eqs. (5.11).

3. Solve H∞-control Problems 2 and 3 (5.3) together with (5.8) and (5.11) and find the transfer
matrix K(s) of controller (2.7).

4. Find the boundaries of guaranteed margins on the object parameters with formulas (4.3) and
find estimates on control errors from (2.8) or (5.9).

5. Compare the margin boundaries found on step 4 with given ones.

6. If the resulting margin boundaries on object parameters from (4.3) do not cover the ones given
in (2.3) or the resulting bounds on control errors exceed given ones, this method does not yield
a solution. However, one can choose other values of nominal parameters or decrease the desired
values of control errors and repeat the synthesis starting from step 2. But in the general case, for
instance, if the object is not minimal phase with respect to control and given errors are less than
minimal possible (or intervals (2.3) are so wide that no linear controller can stabilize the system),
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the solution is not guaranteed to succeed. Numerical experiments have shown that in the case of
such “failure” of the method one or two iterations usually suffice to see that control objectives are
impossible to achieve.

Let us comment upon individual steps of this algorithm. In the software package [12], controller
corresponds to a quadruple of matrices (Ac, Bc, Cc,Dc) that define its state equations, and the
controller’s transfer matrix that we are looking for has the form K(s) = Cc(sI − Ac)

−1Bc + Dc.
The order of the controller does not exceed the order of the object, i.e., the degree of polynomial
detL1(s). During step 3 of the procedure, we first find the minimal possible value γ = γ0 in
problem (5.3) with the hinflmi function (see [17] for details) and then solve the suboptimal problem
(also with hinflmi) for γ > γ0 (for γ = γ0 a part of eigenvalues of the matrix of the closed-loop
system (2.1), (2.7) turns out to be nearly at the imaginary axis!) and find K(s) itself. During
step 4, to find control errors one can use mathematical modeling, as we will show in the example
below.

7. A SAMPLE SYNTHESIS PROBLEM’S SOLUTION

We illustrate the proposed approach to synthesis with the example of a two-mass system with
elastic connection: two wagons connected by a spring. The model is defined by the following
equations [13]:

ẋ1 = x3, ẋ2 = x4, ẋ3 = −qx1 + qx2 + u+ f, ẋ4 = qx1 − qx2y = x2, (7.1)

where q is the varied parameter (spring rigidity) whose nominal value equals 0.8; x1 is the movement
of the first wagon; x2 is the movement of the second wagon; y = x2 is the measured variable; u is
the control influence; f is the external disturbance.

Reduction of Eqs. (7.1) and (2.7) to form (5.1) repeats the derivation shown in [1] (where Λ = q
is scalar), only instead of u we use the sum u+ f , so we do not show it here. A similar remark can
be also made regarding formulas (5.10). Using state equations shown in [1], it is easy to get state
Eqs. (5.11) that correspond to (5.1), where

A =

⎡

⎢

⎢

⎢

⎣

0 0 1 0
0 0 0 1
−q q 0 0
q −q 0 0

⎤

⎥

⎥

⎥

⎦

, B1 =

⎡

⎢

⎢

⎢

⎣

0 0
0 0
1 1
−1 0

⎤

⎥

⎥

⎥

⎦

, B2 =

⎡

⎢

⎢

⎢

⎣

0
0
1
0

⎤

⎥

⎥

⎥

⎦

,

C1 =

[

−q q 0 0

Q1/2 × ( 0 1 0 0 )

]

, C2 =
[

0 1 0 0
]

,

D11 =

[

1 0
0 0

]

, D12 =

[

0
0

]

, D21 =
[

0 0
]

, D22 = [0].

Suppose that the steady state error in the controlled variable must not exceed y∗ = 1, and the
external disturbance (2.4), (2.5) is bounded by w∗ = 1. Then according to (5.8) we get the value
of the only weight coefficient at the scalar controlled variable y on the block-diagram shown on
Fig. 2, Q = q1 = 1.

The controller K(s) obtained with software package [12] has the form

−3.1× 108s3 − 4.2× 108s2 − 4.6 × 108s− 1.6× 108

s4 + 193.7s3 + 2.2× 104s2 + 1.4 × 106s+ 6.1× 107
.

Note that amplitude–frequency characteristics of the closed-loop system |Tyf (jω)| shown on
Fig. 3 (with a controller constructed with the method proposed here) and on Fig. 4 (obtained with
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Fig. 3. Fig. 4.

Fig. 5. Fig. 6.

the method of [1], where the external disturbance is disregarded during synthesis) are monotone
decreasing functions of the frequency ω, so the worst possible external disturbance f in both cases
is a step function.

Note that initial points on Figs. 3 and 4 do not depend on the value of parameter q, which
is a direct consequence of the fact that the transfer coefficient of object, which equals 0.5, does
not depend on q. Figure 5 shows the step response in the closed-loop system with respect to
the controlled variable y = x2 for zero initial conditions and a unit step function as f . For
comparison, Fig. 6 shows the step response with a controller from [1], where the external disturbance
is disregarded during synthesis.

Analyzing the step response, we see that simply accounting in the extended vector of controlled
variables z for the weighted signal y in the extended synthesis procedure lets us decrease the
steady state error in the closed-loop system by three orders of magnitude as compared to [1]. The
reason for this is the fact that the object is minimal phase (it does not have zeros at all [1], and
its transfer function is q/(s4 + 2qs2)). This lets us achieve arbitrarily small control errors as we
increase the weight coefficient q1 based on (5.8) under rather wide margins on q. Guaranteed margin
boundaries on the varying parameter with nominal value 0.8 have been found with formulas (4.3).
Since parameter q is the multiplier in the transfer function of the open system (4.1), then, having
found intersection points of the Nyquist diagram with the real axis (they are −3.756 and −0.093),
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Results of system analysis

Disregarding external
disturbance [1]

Accounting
for disturbance (q1 = 1)

Transfer function of the synthesized con-
troller

−1255s3+8016s2−112.1s−5.679
s4+17.12s3+195s2+1178s+4470

−3.1108s3−4.2×108s2−4.6×108s−1.6×108

s4+193.7s3+2.2×104s2+1.4×106s+6.1×107

Value of parameter γ 1.1701 1.1306

Guaranteed radius of stability margins r 0.8546 0.8845

Guaranteed robust stability boundaries
with respect to parameter q

0.4314 < q < 5.5016 0.4245 < q < 6.9264

True robust stability boundaries with re-
spect to parameter q

0.1985 < q < 8.8594 0.213 < q < 8.6022

Gain and phase stability margins after
breaking the system with respect to plant
input/output

L = 0.57 dB, φc = 6.63˚ L = 20.7 dB, φc = 65.2˚

we find true stability boundaries for the varying parameter q. The table summarizes the results
of our study of the object (7.1) closed by the resulting controller and a controller from [1]. Note
that true and guaranteed margins for the parameter q significantly exceed the margins of known
synthesis methods [12, 13]: 0.4459 < q < 2.066.

The last row of the table shows stability gain L and phase ϕc stability margins which are widely
used in engineering practice and which are found by opening the closed-loop system with respect
to variable u (physical plant input) or y (physical output) [3, 4, 20]. We note rather low stability
margins with respect to both phase and amplitude (the stability margin radius at these opening
points is very small and equals 0.063) if the controller is constructed with no account for external
disturbance, although the bounds on the varying parameter are rather wide. Note that Example 1
of the work [20], which uses the same plant, presents a completely opposite situation: the radius
of stability margins at the input (output) of the plant is significant, while a small deviation of
parameter q from the nominal value leads to instability. Thus, it becomes obvious that we need a
method for robust controller synthesis that would account not only for possible finite deviations of
physical parameters from nominal values but also a given radius of stability margins at the physical
input (output) of the plant. This, however, remains an plant of further study.

8. CONCLUSION

In this work, we have presented one possible solution for the robust stabilization problem under
parametric uncertainty and under the action of external power-bounded polyharmonic disturbances.
We note several advantages of the proposed approach as compared to known ones.

1. We consider deviations of physical parameters from nominal values.

2. The synthesis procedure reduces to a standard H∞-control problem to solve which we have
readily available and widely used software [12].

3. Clear engineering meaning of synthesis criteria (radii of stability margins and steady state),
non-iterative nature and simplicity of the synthesis procedure, as opposed to the widely acclaimed
μ-synthesis procedure [4, 12–15].

4. The order of a controller obtained after solving the synthesis problem does not exceed the
order of the physical control plant, which is important for practical applications.

Remark 1. Generally speaking, amplitudes and frequencies of the external disturbance (2.4)
are fixed only on an interval that does not exceed the settling time in the closed-loop system
(2.1), (2.7). This follows from the lemma on steady-state values [6, 17] for matrix frequency in-
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equalities (5.3)–(5.6) and the disturbance property (2.5) independent on the frequencies of external
disturbances.

Remark 2. The circular absolute stability criterion [21] (the objective inequality (4.2) is one of
its versions) implies that deviations of parameters from nominal values in the boundaries (4.3) may
be nonstationary. Besides, a part of or all circuits with respect to variables ũi (i = 1, n) on Fig. 1
may contain nonstationary nonlinear elements from the class (1/(1 + r), 1/(1− r)) (which belongs
to the Hurwitz angle, a sector) that do not violate asymptotic stability of system on Fig. 1 as a
whole.

One drawback of this approach is the sufficiency of estimates (4.3) and (2.8), (5.9). Certain
sufficiency is introduced by passing from the auxiliary inequality (5.3) to objective inequalities (5.4).
However, our analysis of step response and margins on the parameter in the example of Section 7
indicate that the degree of sufficiency of all these estimates is not too high.

APPENDIX

Proof of Theorem 1. To be definite, assume that the varying physical parameters of the system

are: k arbitrary elements of matrices L
(β1)
1 (β1 = 1, α1): λk+1, λk+2, . . . , λk+q, where k + q = n is

the total number of varying parameters. We introduce the following notation:

L10(p) = L1(p)|λi=0, i = 1, k, L20(p) = L2(p)|λk+j=0, j = 1, q,

where in the corresponding matrices the varying parameters are replaced by zeros. We represent
the original plant (2.1) in an equivalent form (where we have omitted the arguments to simplify
notation and denoted zf = z):

L10z = L20u+ L3f +
k
∑

r=1

eir ũr +
n
∑

r=k+1

eαr ũr,

ũr(p) = −λrp(β 1)reTjrz, r = 1, k,

ũr(p) = λrp
(β 2)rηTβr

u, r = k + 1, n,

y = Nz.

(A.1)

Here (βs)r (s = 1, 2) is the index of matrix L
(βs)
s where parameter λr is located (r = 1, n); (ir, jr) are

the row and column of matrix L
(β1)
1 where parameter λr is located for r = 1, k; (αr, βr) are the row

and column of matrix L
(β2)
2 , where parameter λr is located for r = k + 1, n; ejr , ηβr are vectors of

size l and m respectively:

ejr =

{

ejr,i = 0 for i �= jr
ejr ,jr = 1,

ηβr =

{

ηβr ,i = 0 for i �= βr
ηβr ,βr = 1.

We introduce the matrix E that unites vectors eir and eαr from the first relation of (A.1)
and, constructing the n-dimensional vector of dummy inputs ũ = [ũ1, ũ2, . . . , ũk+1, . . . , ũn]

T, after
passing to the Laplace transform under zero initial conditions we get from this relation that

z = (L10(s))
−1Eũ+ (L10(s))

−1L20(s)u+ (L10(s))
−1L3(s)f. (A.2)

Taking into account (A.2), the last equation of (A.1), and the second relation from (3.1), we
conclude that

W21 = N(L10(s))
−1E, W22 = N(L10(s))

−1L20(s), W23 = N(L10(s))
−1L3(s). (A.3)
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We now obtain expressions for n dummy outputs of the plant ỹr united into the vector ỹ. To
satisfy ũ = Λỹ, dummy outputs in (A.1) must have the form ỹr(s) = −s(β1)reTjrz for (r = 1, k) and

ỹr(s) = s(β2)rηTβr
u for (r = k + 1, n), and the matrix from (3.1)W1s (s = 1, 3) will have the following

form:

W11(p) =

( −s(β1)reTjr , r = 1, k

0, q × l

)

(L10(s))
−1E,

W12(s) =

⎛

⎝

−s(β1)remjr(L10(s))
−1 L20(s), r = 1, k

s(β2)rηmβr
, r = k + 1, n

⎞

⎠ ,

W13(s) =

( −s(β1)remjr , r = 1, k

0, q × l

)

(L10(s))
−1L3(s),

(A.4)

as required. Note that relations (A.2)–(A.4) are meaningful if matrix L10(s) = L1(s)|λi=0 (i = 1, k)
is nonsingular. Otherwise we can take some λi to be nonzero, and λi = εi, where εi are sufficiently
small compared to the new nominal λi − εi.
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